Luyện tập Hàm số liên tục Cánh Diều

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tìm khẳng định đúng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 2: Thông hiểu
    Chọn khẳng định đúng

    Biết rằng f(x) =\left\{ \begin{matrix}\dfrac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ khi\ x eq 1 \\\end{matrix} ight. liên tục trên \lbrack 0;1brack với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?

    Hướng dẫn:

    Ta có:

    Hàm số xác định và liên tục trên \lbrack
0;1brack

    Khi đó f(x) liên tục trên \lbrack 0;1brack khi và chỉ khi \lim_{x ightarrow 1^{-}}f(x) = f(1)\ \ \
(*)

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} - 1}{\sqrt{x} - 1} = \lim_{x ightarrow 1^{-}}\left\lbrack (x +
1)\left( \sqrt{x} + 1 ight) ightbrack = 4

    (*) \Leftrightarrow a = 4

  • Câu 3: Thông hiểu
    Chọn khẳng định đúng

    Xét tính liên tục của hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{x - 1}}{{\sqrt {2 - x}  - 1}}{\text{        khi }}x < 1} \\ 
  { - 2x{\text{   khi }}x \geqslant 1} 
\end{array}} ight.. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số liên tục trên các khoảng ( -
\infty;1),(1; + \infty)

    Ta có:

    f(1) = - 2

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}( - 2x) = - 2

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x - 1}{\sqrt{2 - x} - 1} = \lim_{x ightarrow
1^{-}}\left\lbrack - \left( \sqrt{2 - x} + 1 ight) ightbrack = -
2

    => Hàm số liên tục tại x =
1

    Vậy hàm số liên tục trên tập số thực.

  • Câu 4: Thông hiểu
    Xác định khoảng liên tục của hàm số

    Xác định khoảng liên tục của hàm số f(x) = \left\{ \begin{matrix}
\cos\frac{\pi x}{2}\ \ \ \ \ \ \ \ khi\ |x| \leq 1 \\
x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ |x| > 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Hàm số liên tục trên các khoảng ( -
\infty; - 1),(1; + \infty);( - 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} \left( {x - 1} ight) =  - 2 \hfill \\
  f\left( { - 1} ight) = 0 \hfill \\ 
\end{gathered}  ight.

    => Hàm số gián đoạn tại x = -
1

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  f\left( 1 ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \cos \dfrac{{\pi x}}{2} = 0 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
1

  • Câu 5: Thông hiểu
    Tính số điểm gián đoạn của hàm số

    Số điểm gián đoạn của hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\begin{matrix}
x^{2} + 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ 0 \leq x \leq 2 \\
3x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 2 \\
\end{matrix} \\
\end{matrix} ight. là:

    Hướng dẫn:

    Hàm số xác định trên \mathbb{R}

    Dễ thấy hàm số liên tục trên mỗi khoảng (
- \infty;0),(0;2),(2; + \infty)

    Ta có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x} ight) = 0 \hfill \\
  f\left( 0 ight) = 1 \hfill \\ 
\end{matrix}  ight.

    => Hàm số gián đoạn tại x =
0

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 1} ight) = 5 \hfill \\
  f\left( 2 ight) = 5 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x - 1} ight) = 5 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
2

    Vậy có 1 điểm gián đoạn.

  • Câu 6: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 7: Nhận biết
    Tính giá trị của M.n

    Cho hàm số y =
f(x) liên tục trên đoạn \lbrack -
1;2brack và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack. Giá trị của M.n là:

    Hướng dẫn:

    Hàm số y = f(x) liên tục trên \lbrack - 1;2brack.

    Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1

    Vậy M.n = -3

  • Câu 8: Thông hiểu
    Tìm giá trị thực của tham số m

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x = 1.

    Hướng dẫn:

    Ta có:

    f(1) = m + 3

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{3} - x^{2} + 2x - 2}{x - 1}

    = \lim_{x ightarrow1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1} = \lim_{x ightarrow1}\left( x^{2} + 2 ight) = 3

    Hàm số f(x) liên tục tại x = 1

    = > m + 3 = 3 = > m =
0

  • Câu 9: Thông hiểu
    Tìm giá trị thực của tham số a

    Tìm giá trị thực của tham số a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 1}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x_{0} = 1.

    Hướng dẫn:

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{2} - 1}{x - 1}= \lim_{x ightarrow 1}\frac{(x -1)(x + 1)}{x - 1} = \lim_{x ightarrow 1}(x + 1) = 1

    Hàm số f(x) liên tục tại x = 1

    = > a = 2

  • Câu 10: Nhận biết
    Điều kiện cần và đủ để hàm số liên tục

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Hướng dẫn:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 11: Nhận biết
    Hãy chọn kết luận đúng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Hướng dẫn:

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 12: Vận dụng cao
    Tìm số giao điểm của hàm số với trục hoành

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hướng dẫn:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 13: Thông hiểu
    Mệnh đề nào dưới đây sai

    Cho hàm số y =
f(x)y = g(x) là hai hàm số liên tục tại điểm x_{0}. Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Xét trường hợp y = g(x) liên tục tại x_{0}g\left( x_{0} ight) = 0 thì hàm số y = \frac{f(x)}{g(x)} không xác định tại x_{0}.

  • Câu 14: Thông hiểu
    Hàm số nào dưới đây không liên tục

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Hướng dẫn:

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 15: Nhận biết
    Hàm số đã cho liên tục trên khoảng nào

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hướng dẫn:

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (53%):
    2/3
  • Vận dụng (7%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 2 lượt xem
Sắp xếp theo