Cho hình chóp ,
vuông góc với mặt
. Khi đó, góc hợp giữa đường thẳng
và mặt phẳng
là:
Ta có:
nên hình chiếu của SB lên mặt phẳng (ABC) là AB.
Do đó
Cho hình chóp ,
vuông góc với mặt
. Khi đó, góc hợp giữa đường thẳng
và mặt phẳng
là:
Ta có:
nên hình chiếu của SB lên mặt phẳng (ABC) là AB.
Do đó
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Hình vẽ minh họa:
Ta có: SM ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.
Ta tính được:
Xét tam giác ADM có:
=>
Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, , M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi
là góc tạo bởi A’H với (A’ACC’). Tính
?
Ta có nên A’H là đường cao của lăng trụ.
Kẻ (K thuộc đoạn AC)
Kẻ
Suy ra
Khi đó
+) Do tam giác MCB cân tại B nên
+) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng (theo giả thiết)
Và BM = AM = AB = a
=> Tam giác AMB là tam giác đều cạnh a
Vì vậy,
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?
Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. . Góc giữa đường thẳng SA và (ABC) bằng
+) Gọi H là trung điểm BC.
Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có:
=> Hình chiếu của SA lên (ABC) là HA
(vì tam giác SAH vuông tại H)
+) Ta có:
Xét tam giác SHA vuông tại H:
Vậy
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA’ = 1. Tính góc giữa AB’ và (BCC’B’).
Hình vẽ minh họa:
Ta có:
=> BA ⊥ (BCC’B’)
Khi đó BB’ là hình chiếu vuông góc của AB’ lên (BCC’B’)
Hay góc giữa AB’ và (BCC’B’) là
Ta có:
Vậy góc giữa AB’ và (BCC’B’) là 600
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết .
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.
Hình vẽ minh họa:
Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.
=> Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB
Tức là
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)
Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và . Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và . Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi
là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính
.
Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).
Khi đó:
Ta có:
Xét tam giác ACM có:
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên