Luyện tập Góc giữa đường thẳng và mặt phẳng. Góc nhị diện Cánh Diều

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề sai

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 2: Nhận biết
    Góc giữa đường thẳng SB và mặt phẳng đáy

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hướng dẫn:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 3: Vận dụng
    Chọn mệnh đề đúng trong các mệnh đề đã cho

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 4: Vận dụng
    Tính góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

  • Câu 5: Nhận biết
    Tính số đo góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABC, SA vuông góc với mặt (ABC). Khi đó, góc hợp giữa đường thẳng SB và mặt phẳng (ABC) là:

    Hướng dẫn:

    Ta có:

    SA\bot(ABC) nên hình chiếu của SB lên mặt phẳng (ABC) là AB.

    Do đó \left( SB;(ABC) ight) = (SB;AB) =\widehat{SBA}

  • Câu 6: Thông hiểu
    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Hướng dẫn:

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 7: Thông hiểu
    Góc giữa đường thẳng SA và (ABC) là

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. SA = SB = SC = \frac{{a\sqrt 3 }}{3}. Góc giữa đường thẳng SA và (ABC) bằng

    Hướng dẫn:

    Góc giữa đường thẳng SA và (ABC) là

    +) Gọi H là trung điểm BC.

    Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Ta có: SA = SB = SC\,\left( {gt} ight) \Rightarrow SH \bot \left( {ABC} ight)

    => Hình chiếu của SA lên (ABC) là HA

    \Rightarrow \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {\left( {SA,HA} ight)} = \widehat {SAH} (vì tam giác SAH vuông tại H)

    +) Ta có: AH = \frac{{BC}}{2} = \frac{a}{2}

    Xét tam giác SHA vuông tại H:

    \cos \widehat {SAH} = \dfrac{{AH}}{{SA}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{3}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SAH} = 30^\circ

    Vậy \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {SAH} = 30^\circ

  • Câu 8: Thông hiểu
    Tính giá trị tan α

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 9: Thông hiểu
    Sin của góc tạo bởi A’H với (A’ACC’)

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Hướng dẫn:

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 10: Vận dụng
    Tính góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết MN =
\frac{a\sqrt{10}}{2}.

    Hướng dẫn:

    Hình vẽ minh họa:

    Kẻ Mk // SO

    Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)

    => \left( MN;(ABCD) ight) = (MN,NK)
= \widehat{MNK}

    Ta có: CK = \frac{3}{4}CA =
\frac{3a\sqrt{2}}{4}

    Xét tam giác CNK có:

    \begin{matrix}cos45^{0} = \dfrac{CN^{2} + CK^{2} - NK^{2}}{2.CN.CK} \hfill \\\Rightarrow KN = \dfrac{a\sqrt{10}}{4} \hfill \\\end{matrix}

    Xét tam giác MNK vuông ta có:

    \cos\widehat{MNK} = \frac{NK}{MN} =
\frac{1}{2} \Rightarrow \widehat{MNK} = 60^{0}

  • Câu 11: Nhận biết
    Xác định góc giữa SB và mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hướng dẫn:

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 12: Thông hiểu
    Tính góc giữa đường thẳng và mặt phẳng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và I = AC \cap BD. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi \varphi là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính \sin \varphi.

    Hướng dẫn:

    Tính góc giữa đường thẳng và mặt phẳng

    Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).

    Khi đó: NH = h = d\left( {N,\left( {ACM} ight)} ight) = IN.\sin \varphi

    Ta có: h = d\left( {N,\left( {ACM} ight)} ight) = \frac{1}{2}d\left( {A',\left( {ACM} ight)} ight) = \frac{{3{V_{A'ACM}}}}{{2{S_{ACM}}}}

    Xét tam giác ACM có:  CM = \frac{{\sqrt 5 }}{2}a

    \begin{matrix}  A{M^2} = \dfrac{{A{{D'}^2} + A{{C'}^2}}}{2} - \dfrac{{C'{{D'}^2}}}{4} \hfill \\   = \dfrac{{{{\left( {\sqrt 2 a} ight)}^2} + {{\left( {\sqrt 3 a} ight)}^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{9}{4}{a^2} \Rightarrow AM = \dfrac{3}{2}a \hfill \\   \Rightarrow {S_{ACM}} = \sqrt {p\left( {p - AC} ight)\left( {p - CM} ight)\left( {p - AM} ight)}  = \dfrac{3}{4}{a^2} \hfill \\  \left( {p = \dfrac{{AC + CM + AM}}{2}} ight) \hfill \\  {V_{A'ACM}} = {V_{M.A'AC}} = \dfrac{1}{2}{V_{D'.A'AC}} = \dfrac{1}{6}{V_{ACD.A'C'D'}} = \dfrac{1}{{12}}{V_{{\text{lp}}}} = \dfrac{{{a^2}}}{{12}} \hfill \\   \Rightarrow h = IN = \dfrac{a}{6} \hfill \\ \end{matrix}

    Vậy \sin \varphi  = \frac{h}{{IN}} = \frac{{\sqrt 3 }}{9}

  • Câu 13: Thông hiểu
    Xác định góc giữa đường thẳng và mặt phẳng

    Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.

    => Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB

    Tức là \alpha =
\widehat{SBA}

  • Câu 14: Nhận biết
    Xác định góc giữa SC và mặt phẳng (ABCD)

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hướng dẫn:

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 15: Thông hiểu
    Tính góc giữa AB’ và (BCC’B’)

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA’ = 1. Tính góc giữa AB’ và (BCC’B’).

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AB\bot BC \\AB\bot BB’ \\\end{matrix} ight.

    => BA ⊥ (BCC’B’)

    Khi đó BB’ là hình chiếu vuông góc của AB’ lên (BCC’B’)

    Hay góc giữa AB’ và (BCC’B’) là \widehat{AB'B}

    Ta có: AB = \sqrt{AC^{2} - BC^{2}} =\sqrt{2^{2} - 1^{2}} = \sqrt{3}

    \tan\widehat{AB'B} =\frac{AB}{BB'} = \sqrt{3}

    Vậy góc giữa AB’ và (BCC’B’) là 600

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 21 lượt xem
Sắp xếp theo