Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến của chúng sẽ có bao nhiêu vị trí tương đối?
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến song song hoặc đồng quy.
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến của chúng sẽ có bao nhiêu vị trí tương đối?
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến song song hoặc đồng quy.
Cho hình hộp . Gọi lần lượt là trọng tâm của tam giác và . Khi đó tỉ số độ dài là:
Hình vẽ minh họa
Gọi lần lượt là tâm của các hình bình hành
Vì là hình bình hành nên
Từ đó ta có:
(*)
(**)
Từ (*) và (**) suy ra hay
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Ta có:
(đường trung bình 4SAD)
(đường trung bình 4BAD)
=> O, N, M, P cùng nằm trong một mặt phẳng.
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm tam giác ABC. Giả sử mặt phẳng (P) đi qua G và song song với mặt phẳng (BCD). Xác định các giao tuyến của (P) với các mặt của tứ diện đều. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa:
Trong mặt phẳng (ABC) kẻ đường thẳng qua G và song song với BC cắt AC, AB lần lượt tại H, K.
Trong mặt phẳng (ACD) kẻ đường thẳng qua H và song song với CD cắt AD tại I.
Hình tạo bởi các giao tuyến cần tìm là KHI.
theo tỉ số đồng dạng bằng
Cho hình chóp S.ABC, tam giác ABC vuông tại A, . Gọi I là trung điểm của BC, SB ⊥ AI. Giả sử mặt phẳng là mặt phẳng đi qua M và song song với SB, AI. Xác định hình tạo bởi các giao tuyến của mặt phẳng với các mặt của hình chóp.
Hình vẽ minh họa
Ta có:
Do đó giao tuyến của với (ABC) là đường thẳng đi qua M và song song với AI cắt BC tại N.
Tương tự
Vậy giao tuyến của với hình chóp S.ABC là tứ giác .
Trong không gian, đường thẳng song song với mặt phẳng nếu
Đường thẳng song song với mặt phẳng khi và chỉ khi không nằm trong , đồng thời song song với một đường thẳng nằm trong .
Cho tứ diện có tất cả các cạnh bằng . Lấy là trung điểm của , sao cho . Giả sử mặt phẳng chứa và song song với . Xác định các giao tuyến của mặt phẳng với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh hoạ
Trong mp(ABD) kẻ
Trong mp(ABC) kẻ
Gọi P là điểm đối xứng của C qua D.
Khi đó
=> Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.
Ta lại có:
Mặt khác
Trong tam giác PAC vuông tại A ta có:
Diện tích tam giác PIM
Với
Cho tứ diện . Điểm thuộc đoạn ( khác , khác ). Giả sử mặt phẳng đi qua M và song song với và . Xác định các giao tuyến của mặt phẳng với tứ diện . Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa
Trong mặt phẳng (ACD) kẻ .
Trong mặt phẳng (ABC) kẻ .
Từ đó suy ra
Vậy hình tạo bởi các giao tuyến của (MNP) và tứ diện ABCD là tam giác MNP.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa
Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?
Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy a song song d
Hình chóp ngũ giác có bao nhiêu cạnh?
Hình chóp ngũ giác có 10 cạnh.
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và .
Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?
Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.
Cho hình chóp có là hình bình hành tâm , là trung điểm . Tìm mệnh đề sai.
Do nên
=> sai.
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.