Luyện tập Cấp số cộng Cánh Diều

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính tổng biểu thức A

    Tính tổng A =
1000^{2} - 999^{2} + 998^{2} - 997^{2} + ... + 2^{2} -
1^{2}

    Hướng dẫn:

    Ta có:

    A = 1000^{2} - 999^{2} + 998^{2} -
997^{2} + ... + 2^{2} - 1^{2}

    A = 1.(1000 + 999) + 1.(998 + 997) + ...
+ 1.(2 + 1)

    A = 1999 + 1995 + ... + 3

    Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu u_{1} = 1999 và công sai d = −4. Giả sử tổng trên có n số hạng thì

    u_{n} = 3

    \Leftrightarrow u_{1} + (n - 1) =
3

    \Leftrightarrow 1999 + (n - 1)( - 4) =
3

    \Leftrightarrow n = 500

    \Rightarrow T = S_{500} = \frac{\left(
u_{1} + u_{500} ight).500}{2} = \frac{(1999 + 3).500}{2} =
500500

  • Câu 2: Vận dụng
    Tính giá trị số hạng thứ n

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 3: Thông hiểu
    Số 100 là số hạng thứ mấy của cấp số cộng

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
u_{1} = - 1 \\
d = 3 \\
\end{matrix} ight.

    \overset{n \mapsto u_{n} =
100}{ightarrow}100 = u_{1} + (n - 1)d

    \Leftrightarrow 100 = 3n -
8

    \Leftrightarrow n = 36

  • Câu 4: Thông hiểu
    Tính công sai d

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Hướng dẫn:

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 5: Thông hiểu
    Xác định dãy số tổng quát

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 6: Thông hiểu
    Tìm số hạng tổng quát của cấp số cộng

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Hướng dẫn:

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 7: Thông hiểu
    Tìm x và y để dãy số lập thành cấp số cộng

    Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?

    Gợi ý:

     Áp dụng công thức:

    {u_{n + 1}} + {u_{n - 1}} = 2{u_n}

    Hướng dẫn:

    Ta có:

    Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng

    => - 7 + 11 = 2.x \Rightarrow x = 2

    Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng

    => 2 + y = 2.11 \Rightarrow y = 20

    Vậy x = 2; y = 20

  • Câu 8: Vận dụng cao
    Tính tổng dãy số

    Tổng S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} là: 

    Hướng dẫn:

    Ta có: S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} = 199 + 15 + ... + 3

    Xét cấp số cộng (un) có:

    Số hạng đầu là u1 = 199

    Công sai d = u2 – u1 = 195 – 199 = -4

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 3 = 199 - 4\left( {n - 1} ight) \hfill \\   \Rightarrow n = 50 \hfill \\   \Rightarrow S = \dfrac{{n\left( {{u_1} + {u_{50}}} ight)}}{2} = \dfrac{{50\left( {199 + 3} ight)}}{2} = 5050 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng cao
    Tính giá trị x + y

    Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \tan \frac{A}{2}.\tan \frac{C}{2} = \frac{x}{y};\left( {x,y \in \mathbb{N}} ight). Tính giá trị x + y.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  a + c = 2b \hfill \\   \Rightarrow \sin A + \sin C = 2\sin B \hfill \\   \Rightarrow 2\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A - C}}{2} = 4\sin \dfrac{B}{2}.\cos \dfrac{B}{2} = 4\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{{A - C}}{2} = 2\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} + \sin \dfrac{A}{2}.\sin \dfrac{C}{2} = 2\cos \dfrac{A}{2}.\cos \dfrac{C}{2} - 2\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} = 3\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow 3\tan \dfrac{A}{2}.\tan \dfrac{C}{2} = 1 \hfill \\   \Rightarrow \tan \dfrac{A}{2}.\tan \dfrac{C}{2} = \dfrac{1}{3} \hfill \\ \end{matrix}

    => x + y = 4

  • Câu 10: Nhận biết
    Chọn khẳng định đúng

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Gợi ý:

    Công thức tổng quát cấp số cộng là {u_n} = {u_1} + \left( {n - 1} ight).d

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 11: Nhận biết
    Số hạng tổng quát của CSC

    Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.

    Gợi ý:

    Công thức tổng quát cấp số cộng là {u_n} = {u_1} + \left( {n - 1} ight).d

    Hướng dẫn:

    Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {d = {u_2} - {u_1} = 4} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d = 5 + 4\left( {n - 1} ight) = 4n + 1 \hfill \\   \Rightarrow {u_n} = 4n + 1 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết
    Điều kiện để dãy số lập thành CSC

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

    Gợi ý:

    Nếu dãy số (un) là một cấp số cộng thì công sai d của nó là hiệu của một cặp số hạng liên tiếp bất kì (số hạng sau trừ số hạng trước) của dãy số đó.

    Hướng dẫn:

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Nhận biết
    Tìm 3 số hạng để dãy số lập thành CSC

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Gợi ý:

    Ta dùng công thức tổng quát của cấp số cộng để tính: \left[ {\begin{array}{*{20}{c}}  {{u_n} = {u_1} + \left( {n - 1} ight)d} \\   {{u_{n + 1}} = {u_n} + d} \end{array}} ight.

    Hướng dẫn:

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Nhận biết
    Điều kiện để dãy số lập thành cấp số cộng

    Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?

    Gợi ý:

    Nếu dãy số (un) là một cấp số cộng thì công sai d của nó là hiệu của một cặp số hạng liên tiếp bất kì (số hạng sau trừ số hạng trước) của dãy số đó.

    Hướng dẫn:

    Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a

    Theo bài ra ta có:

    Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng

    => u3 – u2 = u4 – u3

    => 6 – 1 = a – 6

    => a = 11

  • Câu 15: Vận dụng
    Xác định số hạng thứ n của cấp số cộng

    Cho dãy số {u_n} = \frac{{{2^{n - 1}} + 1}}{n}. Số hạng thứ 10 của dãy số đó là:

    Hướng dẫn:

    Ta có: {u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}} = 51,3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo