Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho khối trụ có hai đáy là và
.
lần lượt là hai đường kính của
và
, góc giữa
và
bằng
. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?
Ta chứng minh: .
Lấy điểm E sao cho tứ giác BCDE là hình bình hành.
Khi đó .
Mà góc giữa và
bằng
nên ta có:
Ta có
Suy ra
Vậy
Chiều cao của lăng trụ bằng
Áp dụng CT thể tích lăng trụ là:
Một hình nón có bán kính đáy R, góc ở đỉnh là . Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:
Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Cho hình trụ có O, O' là tâm hai đáy. Xét hình chữ nhật có A, B cùng thuộc (O) và C, D cùng thuộc (O') sao cho
đồng thời
tạo với mặt phẳng đáy hình trụ góc
. Thể tích khối trụ bằng
Gọi lần lượt là trung điểm của
và
là trung điểm của
. Suy ra góc giữa mặt phẳng
và mặt phẳng đáy là
.
Ta có .
Xét vuông tại O, ta có:
;
Xét vuông tại M, có
.
Vậy .
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng , khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Cho mặt cầu (S): và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.
(Có thể chọn nhiều đáp án)
Theo đề bài, (S) có tâm
Ta có:
đường tròn
Hay
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Cho hình chóp có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp
là:
Gọi M là trung điểm AC, suy ra
Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.
Ta có , suy ra tam giác SAC đều.
Gọi G là trọng tâm , suy ra
. (1)
Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có nên SM là trục của tam giác ABC.
Mà G thuộc SM nên suy ra .
Từ (1) và (2), suy ra hay G là tâm mặt cầu ngoại tiếp khối chóp
.
Bán kính mặt cầu .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng . Diện tích toàn phần của hình nón là:
Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là . Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:
Gọi E là trung điểm của BC, dựng tại H.
Chứng minh được nên suy ra
.
Trong tam giác đều ABC, ta có
và
Trong tam giác vuông SOE, ta có
.
Vậy thể tích khối nón (đvtt).
Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng . Diện tích của đường tròn giao tuyến bằng:
Gọi H là hình chiếu vuông góc của (O) trên (P) thì
● H là tâm của đường tròn giao tuyến của (P) và (S).
●
Bán kính của đường tròn giao tuyến: .
Suy ra diện tích đường tròn giao tuyến: .
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Cho hình chóp có đáy
là hình vuông cạnh bằng a. Đường thẳng
vuông góc với đáy
. Gọi M là trung điểm SC, mặt phẳng
đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm
nhận giá trị nào sau đây?
Mặt phẳng song song với BD cắt SB, SD lần lượt tại E, F nên
cân tại A , trung tuyến AM nên
(1)
Ta có
Do đó (2)
Từ (1) và (2), suy ra (*)
Lại có (**)
Từ (*) và (**), suy ra . Tương tự ta cũng có
Do đó nên năm điểm
cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính
.
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng . Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác SAB vuông cân tại S.
Gọi E là trung điểm AB, suy ra và
.
Ta có
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông có diện tích bằng
. Góc giữa trục
và mặt phẳng
bằng
. Diện tích xung quanh của hình nón đã cho bằng?
Gọi là trung điểm của
, tam giác
cân đỉnh O nên
và
suy ra
Dựng .
Theo trên có nên
.
Vậy góc tạo bởi giữa trục và mặt phẳng
là
. Tam giác vuông cân
có diện tích bằng
suy ra
.
Xét tam giác vuông có
.
Cuối cùng .
Vậy diện tích xung quanh của hình nón bằng .
Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Cho hình lập phương có cạnh bằng 1 có
trùng với ba trục
. Viết phương trình mặt cầu
tiếp xúc với tất cả các cạnh của hình lập phương.
tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.
Tâm là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng
Bán kính
Cho hai mặt cầu sau:
Xét vị trí tương đối của 2 mặt cầu?
Tiếp xúc trong || tiếp xúc trong
Cho hai mặt cầu sau:
Xét vị trí tương đối của 2 mặt cầu?
Tiếp xúc trong || tiếp xúc trong
Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):
Tâm
bán kính
Tâm
; bán kính
(S) và (S') tiếp xúc trong.
Cho mặt cầu tâm O, bán kính R và mặt phẳng
có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc
. Đường thẳng OM cắt
tại N. Hình chiếu của O trên
là I. Mệnh đề nào sau đây đúng?
Vì I là hình chiếu của O trên nên
mà
nên I là tiếp điểm của
và
.
Đường thẳng OM cắt tại N nên IN vuông góc với OI tại I.
Suy ra IN tiếp xúc với .
Tam giác OIN vuông tại I nên .
Cho đường tròn (C) đường kính AB và đường thẳng . Để hình tròn xoay sinh bởi (C) khi quay quanh
là một mặt cầu thì cần có thêm điều kiện nào sau đây:
Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh là một mặt cầu là trục quay
phải cố định và hai điểm A, B cũng cố định trên
.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và . Độ dài đường sinh
của hình nón bằng:
Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:
Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho . Độ dài đường sinh
của hình nón bằng:
Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp
là:
Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra nên
.
Do đó IM là trục của , suy ra
(1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên . (2)
Từ (1) và (2) , ta có
hay I là tâm của mặt cầu ngoại tiếp hình chóp .
Vậy bán kính .
Trong không gian, cho hình chữ nhật ABCD có và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:
Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho mặt cầu và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn , khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:
Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .