Luyện tập Hệ toạ độ trong không gian (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tìm m

    Cho hai vectơ \overrightarrow V  = \,m\overrightarrow a \,\, - \,\,2\overrightarrow b\overrightarrow W  = \,m\overrightarrow b \,\, - \,\,\overrightarrow avới \overrightarrow a  = \left( {2,\,1,\, - 1} ight)\overrightarrow b  = \left( {1,\, - 2,\,1} ight).Tìm m để \overrightarrow V\overrightarrow W vuông góc.

    Hướng dẫn:

     Điều kiện để

    \overrightarrow V vuông góc \overrightarrow W  \Leftrightarrow \left( {m\overrightarrow a  - 2\overrightarrow b } ight)\left( {m\overrightarrow b  - \overrightarrow a } ight) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)

    Với {\overrightarrow a ^2} = 6;\,{\overrightarrow b ^2} = 6;\,\overrightarrow a .\overrightarrow b  =  - 1

    \begin{array}{l}\left( 1 ight) \Leftrightarrow {m^2} + 18m + 2 = 0\\\,\,\,\,\,\,\,\, \Leftrightarrow m =  - 9 \pm \sqrt {79} \end{array}

  • Câu 2: Thông hiểu
    Tọa độ giao điểm

    Cho ba điểm  A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm tọa độ giao điểm của đường thẳng AB và mặt phẳng (yOz)

    Hướng dẫn:

    Gọi M\left( {0,y,z} ight)  là giao điểm của đường thẳng AB và mặt phẳng (yOz).

    Ta có \overrightarrow {AM}  = \left( { - 2,y + 1,z - 1} ight)\overrightarrow {AB}  = \left( {1, - 1, - 2} ight) cùng phương.

    \Rightarrow \frac{{ - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 2}} \Rightarrow x = 0;y = 1;z = 5 \Rightarrow M\left( {0,1,5} ight)

  • Câu 3: Nhận biết
    Chọn câu đúng?

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c đều khác \vec{0}. Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi:

    Hướng dẫn:

     Áp dụng Điều kiện để 3 vecto đồng phẳng là:

    • \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d} eq\vec{0}\vec{d} có giá vuông góc với mp(P)
  • Câu 4: Vận dụng cao
    Thể tích khối chóp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A, B, C. Tính thể tích khối chóp O.ABC .

    Hướng dẫn:

    Gọi H là hình chiếu của O lên mp (P)

    Tam giác OHM có  OH \le OM,\,\,\,\,\,\,\,\,\forall H

    Khi đó d\left( {O,\left( P ight)} ight) = OH lớn nhất khi M \equiv H, hay OM \bot \left( P ight).

    Mp (P) đi qua và nhận \overrightarrow {OM}  = \left( {1;\,2;\,3} ight) làm véc tơ pháp tuyến,

    phương trình : (P):x + 2y + 3z - 14 = 0

    (P) cắt Ox, Oy, Oz lần lượt tại A\left( {14;\,0;\,0} ight),\,B\left( {0;\,7;\,0} ight),\,C\left( {0;\,0;\,\frac{{14}}{3}} ight)

    => Thể tích cần tìm là:  {V_{O.ABC}} = \frac{{686}}{9}.

  • Câu 5: Thông hiểu
    Tam giác ABC vuông cân cần?

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để tam giác ABC là tam giác vuông cân tại A.

    Hướng dẫn:

     Tam giác ABC vuông cân tại A  \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB}  \bot \overrightarrow {AC} \\AB = AC\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = 0\\A{C^2} = A{B^2}\end{array} ight.

    \begin{array}{l}\overrightarrow {AB}  = \left( { - 1,0,1 - 1} ight) \Rightarrow A{B^2} = 2;\,\,\,\,\,\,\,\,\,\,\,\overrightarrow {AC}  = \left( {x - 3,y - 1, - 1} ight)\\ \Rightarrow \left\{ \begin{array}{l} - 1\left( {x - 3} ight) + 0\left( {y - 1} ight) + 1 = 0\\{\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} + 1 = 2\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\{x^2} + {y^2} - 6x - 2y + 9 = 0\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} ight. \Rightarrow C\left( {4;1} ight)\end{array}

     

  • Câu 6: Vận dụng
    Hình hộp chữ nhật OABC.DEFG

    Cho hình hộp chữ nhật OABC.DEFG có OA = a;\,\,OC = b;\,\,CD = c. Gọi L là tâm hình hộp. Biểu thị vectơ \overrightarrow {OL} theo ba vectơ \overrightarrow {OA} ,\,\,\overrightarrow {OC} và  \overrightarrow {OD}?

    Hướng dẫn:

    Hinh-hop-chu-nhat-OABC-DEFG

    Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra

    \Rightarrow \overrightarrow {OL}  = \frac{1}{2}\overrightarrow {OF}  = \frac{1}{2}\left( {\overrightarrow {OB}  + \overrightarrow {BF} } ight) = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OC}  + \overrightarrow {OD} } ight)

            \Rightarrow \overrightarrow {OL}  = \left( {\frac{a}{2};\frac{b}{2};\frac{c}{2}} ight)

  • Câu 7: Vận dụng cao
    Tìm hệ thức sai?

    Cho tứ diệnABCD. MN lần lượt là trung điểm ACBD. Chọn hệ thức sai:

    Hướng dẫn:

    Ta sẽ xét các đáp án:

    Với \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MN} (luôn đúng vì đây là hệ thức trung điểm)

    Gọi P và Q lần lượt là trung điểm của AD và BC

    \Rightarrow MNPQ là hình bình hành nên ta có:

        \overrightarrow {MP}  + \overrightarrow {MQ}  = \overrightarrow {MN}

    \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MP}  = \dfrac{1}{2}\overrightarrow {CD} \\\overrightarrow {MQ}  = \dfrac{1}{2}\overrightarrow {AB} \end{array} ight. \Rightarrow \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {CD}  = \overrightarrow {MN}  \Rightarrow \overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}

    Suy ra:\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}(đúng)

    Ta có: \overrightarrow {NC}  + \overrightarrow {NA}  = 2\overrightarrow {NM} {m{  }}nên chọn đáp án sai là \overrightarrow {NC}  + \overrightarrow {NA}  = 2\overrightarrow {MN}(sai)

    Với \overrightarrow {AD}  + \overrightarrow {CB}  = \overrightarrow {AB}  + \overrightarrow {BD}  + \overrightarrow {CD}  + \overrightarrow {DB}= \overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN}(đúng)

  • Câu 8: Vận dụng cao
    Tọa độ điểm M

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;-1;5), B(3;4;4), C(4;6;1). Điểm M thuộc mặt phẳng (Oxy) và cách đều các điểm A, B, C có tọa độ là:

    Hướng dẫn:

    Gọi M(x;y;0) \,\,(x, y \in \mathbb R ; x^2+y^2 eq 0) là điểm cần tìm.

    M cách đều A, B, C nên ta có: MA=MB=MC

    \Leftrightarrow \sqrt{(x-1)^2+(y+1)^2+(0-5)^2}

    =\sqrt{(x-3)^2+(y-4)^2+(0-4)^2}

    =\sqrt{(x-4)^2+(y-6)^2+(0-1)^2}

    \Leftrightarrow -2x+2y+27=-6x-8y+41=-8x-12y+53

    \Leftrightarrow \left\{\begin{matrix} 4x+10y-14=0 \\ 2x+4y-12=0 \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} 2x+5y-7=0 \\ x+2y-6=0 \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} x=16 \\ y=-5 \end{matrix}ight.

    Vậy M(16; -5;0).

  • Câu 9: Vận dụng cao
    Tìm hệ thức sai

    Cho hình hộp ABCD.A'B'C'D'. Tìm hệ thức sai:

    Hướng dẫn:

    Tìm hệ thức sai

    Gọi O là tâm hình hộp. Ta có:

    \overrightarrow {AC'}  = 2\overrightarrow {AO}  = 2\overrightarrow {OC'} ;\overrightarrow {CA'}  = 2\overrightarrow {CO}

    \Rightarrow \overrightarrow {AC'}  + \overrightarrow {CA'}  = 2\left( {\overrightarrow {OC'}  + \overrightarrow {CO} } ight) = 2\overrightarrow {CC'}

    Mặt khác ta được:

    \overrightarrow {AC'}  + \overrightarrow {A'C}  + 2\overrightarrow {C'C}  = 2\overrightarrow {CC'}  + 2\overrightarrow {C'C}  = \overrightarrow 0

    Từ đây suy ra:

    \left. \begin{array}{l}\overrightarrow {AC'}  = 2\overrightarrow {AO} \\\overrightarrow {A'C}  = 2\overrightarrow {OC} \end{array} ight\}\overrightarrow {AC'}  + \overrightarrow {A'C}  = 2\left( {\overrightarrow {AO}  + \overrightarrow {AO} } ight) = 2\overrightarrow {AC}

    Vậy  \overrightarrow {AC'}  + \overrightarrow {A'C}  = \overrightarrow {{m{AA}}'}là hệ thức sai và là đáp án cần chọn.

  • Câu 10: Vận dụng cao
    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \dfrac{x-2}{2}=\dfrac{y}{-1} = \dfrac z 4và mặt

    cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với

    (S) tạo với nhau góc 60^0 . Hãy viết phương trình mặt cầu (S)

    Hướng dẫn:

     Viết phương trình mặt cầu

    Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.

    \Rightarrow IH=d(I,d)= \sqrt 6

    TH1: Góc \widehat {MHN}=60^0:

    Theo bài ra ta có: R=IM=IH.\sin30^0= \sqrt 6 .\frac 1 2 = \frac{\sqrt 6}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 3 2

    TH2: Góc \widehat {MHN}=120^0:

    Theo bài ra ta có: R=IM=IH.\sin60^0= \sqrt 6 .\frac {\sqrt 3}{2} = \frac{\sqrt18}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 9 2.

  • Câu 11: Nhận biết
    Tọa độ trọng tâm tam giác

    Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight).

    Tìm tọa độ trọng tâm G của tam giác ABC đã cho?

    Hướng dẫn:

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:

    \Rightarrow G\left\{ \begin{array}{l}x = \frac{1}{3}\left( {2 - 1 + 4} ight) = \dfrac{5}{3}\\y = \frac{1}{3}\left( {4 + 3 - 2} ight) = \dfrac{5}{3}\\z = \frac{1}{3}\left( { - 3 - 2 + 3} ight) = \dfrac{{ - 2}}{3}\end{array} ight.

  • Câu 12: Vận dụng cao
    Tìm hệ thức đúng?

    Cho khối tứ diện ABCD . Gọi P, Q lần lượt là trung điểm của AC, BD.

    Tìm hệ thức đúng:

    Hướng dẫn:

    Tìm hệ thức đúng 

    Theo đề bài, ta xét khối tứ diện ABCD, có:

    \overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AG}               (1)

    \overrightarrow {CB}  + \overrightarrow {BD}  = 2\overrightarrow {CQ}               (2)

    Cộng từng vế của (1) cho (2), ta được:

    \begin{array}{l}\overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AG} \\ + \\\overrightarrow {CB}  + \overrightarrow {BD}  = 2\overrightarrow {CQ} \\\overline {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CB}  + \overrightarrow {BD}  = 2\left( {\overrightarrow {AG}  + \overrightarrow {CQ} } ight)} \end{array}

    Mà  2\left( {\overrightarrow {AG}  + \overrightarrow {CQ} } ight) = 2\left( {\overrightarrow {AP}  + \overrightarrow {PQ}  + \overrightarrow {CP}  + \overrightarrow {PQ} } ight)

                                     = 2\left( {2\overrightarrow {PQ}  + \overrightarrow {AP}  + \overrightarrow {CP} } ight) = 4\overrightarrow {PQ}

    Như vậy, \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CB}  + \overrightarrow {BD}  = 4\overrightarrow {PQ}.

  • Câu 13: Vận dụng
    Thể tích hình lăng trụ

    Tính thể tích hình lăng trụ ABCD.EFGH, biết \overrightarrow {AB}  = \left( {2, - 4,3} ight);\overrightarrow {EH}  = \left( {3, - 2,1} ight)\overrightarrow {CG}  = \left( { - 1,3, - 2} ight).

    Gợi ý:

     Áp dụng công thức tính thể tích lăng trụ: {V_{ABCDEFGH}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight|

    Hướng dẫn:

    Theo đề bài, ta có:

     \overrightarrow {AB}  = \left( {2, - 4,3} ight);\,

    \,\overrightarrow {AD}  = \overrightarrow {EH}  = \left( {3, - 2,1} ight);\,

    \overrightarrow {AE}  = \overrightarrow {CG}  = \left( { - 1,3, - 2} ight)

    Áp dụng CT tính thể tích khối lăng trụ:{V_{ABCDEFGH}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight| 

    Suy ra: \begin{array}{l}V = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight|\\\,\,\,\,\, = \left| {\left| {\begin{array}{*{20}{c}}2&{ - 4}&3\\3&{ - 2}&1\\{ - 1}&3&{ - 2}\end{array}} ight|} ight|\\\,\,\,\,\, = \left| {2 - 20 + 21} ight| = 3\end{array}.

  • Câu 14: Thông hiểu
    Tìm E cách đều 3 điểm

    Cho ba điểm A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm điểm E trên mặt phẳng (xOy) cách đều A, B, C.

    Hướng dẫn:

     Gọi E\left( {x,y,0} ight)  trên mặt phẳng (xOy).

    Ta có:EA =EB=EC

    \Rightarrow \left\{ \begin{array}{l}A{E^2} = B{E^2}\\A{E^2} = C{E^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 3} ight)^2} + {\left( {y + 2} ight)^2} + {1^2}\\{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 1} ight)^2} + {\left( {y - 3} ight)^2} + {\left( { - 4} ight)^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x - y = 4\\x - 4y =  - 10\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{26}}{3}\\y = \dfrac{{14}}{3} \Rightarrow E\left( {\dfrac{{26}}{3},\dfrac{{14}}{3},0} ight)\end{array} ight.

  • Câu 15: Thông hiểu
    Tam giác ABC đều cần?

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để ABC là tam giác đều?

    Gợi ý:

     Áp dụng tích chất tam giác ABC đều có AB=AC=BC rồi xét hệ.

    Hướng dẫn:

     Tam giác ABC đều

    \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}AC = AB\\BC = AB\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 6x - 2y + 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)\\{x^2} + {y^2} - 4x - 2y + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 ight)\end{array} ight.\\\left( 2 ight) - \left( 1 ight):2x - 6 = 0 \Leftrightarrow x = 3 \Rightarrow {y^2} - 2y = 0 \Leftrightarrow y = 2 \vee y = 0\end{array}

    Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: 

    C\left( {3;2; - 1} ight);C'\left( {3;0; - 1} ight)

  • Câu 16: Nhận biết
    Tìm tọa độ

    Cho M trên đường thẳng AB với A\left( {{x_A},{y_A},{z_A}} ight)B\left( {{x_B},{y_B},{z_B}} ight). Nếu \overrightarrow {AM}  = k.\overrightarrow {BM} với k e  - 1 thì tọa độ của M là:

    Hướng dẫn:

    Vì M nằm trên AB và nên \overrightarrow {AM}  = k.\overrightarrow {BM}khi xét theo tọa độ vecto 2 điểm A và B, ta có:

     \begin{array}{l}\overrightarrow {AM}  = k\overrightarrow {MB}  \Leftrightarrow \left\{ \begin{array}{l}x - {x_A} = k\left( {{x_B} - x} ight)\\y - {y_A} = k\left( {{y_B} - y} ight)\\z - {z_A} = k\left( {{z_B} - z} ight)\end{array} ight.\\ \Rightarrow M\left( {x = \dfrac{{{x_A} + k{x_B}}}{{1 + k}},y = \dfrac{{{y_A} + k{y_B}}}{{1 + k}},z = \dfrac{{{z_A} + k{z_B}}}{{1 + k}}} ight)\end{array}

  • Câu 17: Thông hiểu
    Trọng tâm tam giác

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x, y để G\left( {2, - 1, - \frac{2}{3}} ight) là trọng tâm tam giác ABC?

    Hướng dẫn:

     Vì G là trọng tâm tam giác ABC nên áp dụng công thức, ta có:

    \left\{ \begin{array}{l}{x_A} + {x_B} + {x_c} = 3.{x_G}\\{y_A} + {y_B} + {y_c} = 3.{y_G}\\{z_A} + {z_B} + {z_c} = 3.{z_G}\end{array} ight.

    Thay tọa độ các điểm vào ta được hệ sau:

    \left\{ \begin{array}{l}3 + 2 + x = 3.2 = 6\\1 + 1 + y = 3\left( { - 1} ight) =  - 3\\0 - 1 - 1 = 3\left( { - \dfrac{2}{3}} ight) =  - 2\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 5\end{array} ight.

  • Câu 18: Nhận biết
    Góc giữa 2 vecto

    Trong không gian Oxyz cho vectơ \vec a e \vec 0\left| {\vec a} ight| = a. Gọi \alpha ,\,\beta ,\,\gamma lần lượt là ba góc tạo bởi \vec a với ba trục \overrightarrow {Ox} ,\,\,\overrightarrow {Oy} ,\,\,\overrightarrow {Oz}. Ta có:

    Hướng dẫn:

     Áp dụng công thức hình chiếu vecto trên trục, ta có ngay được:

    \overrightarrow a  = \left( {{a_1},\,{a_2},\,{a_3}} ight) = \left( {a\cos \alpha ,b\cos \beta ,c\cos \gamma } ight)

  • Câu 19: Nhận biết
    Tính góc

    Tính góc của hai vectơ \overrightarrow a  = \,\left( { - 4,2,4} ight);\,\,\,\,\,\overrightarrow b  = \,\left( {2\sqrt 2 , - 2\sqrt 2 ,0} ight)

    Hướng dẫn:

     Áp dụng công thức tính góc giữa 2 vecto, ta có:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|}} = \frac{{x.x' + y.y'}}{{\sqrt {{x^2} + {y^2}} .\sqrt {x{'^2} + y{'^2}} }}

    Thay số suy ra được:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{ - 8\sqrt 2  - 4\sqrt 2  + 0}}{{\sqrt {36} .\sqrt {16} }} = \frac{{ - \sqrt 2 }}{2} \Rightarrow \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = {135^0}

  • Câu 20: Vận dụng
    Phân tích vecto

    Phân tích vectơ \overrightarrow V  = \left( {4\,,\,3\,,\, - 5\,} ight) theo ba vectơ không đồng phẳng

    \overrightarrow a  = \left( {2, - 1,1} ight);\,\,\overrightarrow b  = \left( {1, - 3,2} ight);\,\,\overrightarrow c  = \left( { - 3,2, - 2} ight).

    Hướng dẫn:

    Ta có 3 vecto \overrightarrow a ;\,\,\,\overrightarrow b ;\,\,\,\overrightarrow c không đồng phẳng. Khi đó luôn có :

    \begin{array}{l}\exists m,n,p \in \mathbb R :m\overrightarrow a  + n\overrightarrow b  + p\overrightarrow c  = \overrightarrow V \\ \Leftrightarrow \left\{ \begin{array}{l}2m + n - 3p = 4 & \left( 1 ight)\\ - m - 3n + 2p = 3 & \left( 2 ight)\,\,\,\,\,;\left( 2 ight) + \left( 3 ight) \Rightarrow n = 2\\m + 2n - 2p =  - 5 & \left( 3 ight)\end{array} ight.\\ \Rightarrow \left\{ \begin{array}{l}2m - 3p = 2 & \left( {1'} ight)\\ - m + 2p = 9 & \left( {2'} ight)\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}m = 31\\p = 20\end{array} ight.\\ \Rightarrow \overrightarrow V  = 31\overrightarrow a  + 2\overrightarrow b  + 20\overrightarrow c \end{array}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo