Luyện tập Ứng dụng của tích phân (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Hướng dẫn:

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 2: Thông hiểu
    Quãng đường từ lúc xuất phát đến lúc dừng lại của ô tô

    Một ô tô xuất phát với vận tốc {v_1}\left( t ight) = 2t + 12\left( {m/s} ight) sau khi đi được một khoảng thời gian {t_1} thì bất ngờ phanh gấp với vận tốc {v_2}\left( t ight) = 24 - 6t\left( {m/s} ight) và đi thêm được một khoảng thời gian {t_2} nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?

    Hướng dẫn:

     Ta có: {v_2}\left( 0 ight) = 24\left( {m/s} ight) do đó khi gặp chướng ngại vật vật có vận tốc là 24\left( {m/s} ight)

    => {v_1}\left( t ight) = 2t + 12 = 24 \Rightarrow t = 6\left( s ight)

    Vật dừng lại khi {v_2}\left( t ight) = 24 - 6t = 0 \Rightarrow {t_2} = 4\left( s ight)

    Quãng đường vật đi được là

    S = \int\limits_0^6 {{v_1}\left( t ight)d\left( t ight) + } \int\limits_0^4 {{v_2}\left( t ight)d\left( t ight)}  = \int\limits_0^6 {\left( {2t + 12} ight)d\left( t ight) + } \int\limits_0^4 {\left( {24 - 6t} ight)d\left( t ight)}  = 156\left( m ight)

  • Câu 3: Vận dụng
    Tính thể tích của một vật thể

    Tính thể tích của một vật thể nằm giữa hai mặt phẳng x = 0;x = \pi, biết thiết diện của vật thể cắt bởi mặt phẳng \left( P ight) vuông góc với trục Ox tại điểm có hoành độ  là một tam giác đều có cạnh bằng 2\sqrt {\sin x}

    Hướng dẫn:

     Diện tích thiết diện là S\left( x ight) = \frac{{{{\left( {2\sqrt {\sin x} } ight)}^2}.\sqrt 3 }}{4} = \sqrt 3 \sin x

    Ta có thể tích cần tính là V = \int\limits_0^\pi  {\sqrt 3 \sin xdx = \left. { - \sqrt 3 \cos x} ight|_0^\pi  = } 2\sqrt 3

  • Câu 4: Vận dụng cao
    Mệnh đề nào sau đây đúng?

    Cho hàm số y = f\left( x ight) có đạo hàm và liên tục trên \mathbb{R}. Biết rằng đồ thị hàm số y = f'\left( x ight) như hình bên. Lập hàm số g\left( x ight) = f\left( x ight) - {x^2} - x. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Hướng dẫn:

    Hình vẽ minh họa:

    Mệnh đề nào sau đây đúng

    Đặt h\left( x ight) = {x^2} + x

    Gọi \left( \Delta  ight) là đồ thị của hàm số h'\left( x ight) = 2x + 1

    Từ đồ thị ta thấy f'\left( x ight) = h'\left( x ight) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta thấy \int\limits_{ - 1}^1 {\left[ {f'\left( x ight) - h'\left( x ight)} ight]} dx = g\left( 1 ight) - g\left( { - 1} ight) > 0\left( * ight)

    => g\left( { - 1} ight) > g\left( 1 ight) sai

    \int\limits_1^2 {\left[ {f'\left( x ight) - h'\left( x ight)} ight]} dx = g\left( 2 ight) - g\left( 1 ight) < 0\left( {**} ight)

    => g\left( 1 ight) > g\left( 2 ight) đúng

  • Câu 5: Thông hiểu
    Tính giá trị k của vận tốc

    Một ô tô đang chạy đều với vận tốc k\left( {m/s} ight) thì người lái xe đạp phanh. Từ thời điểm ô tô chuyển động chậm dần đều với vận tốc v\left( t ight) =  - 4t + k\left( {m/s} ight). Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 56m. Tính giá trị của k?

    Hướng dẫn:

    Khi dừng hẳn - 4t + k = 0 \Rightarrow t = \frac{k}{4}\left( s ight)

    Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:

    S = \int\limits_0^{\frac{k}{4}} {v\left( t ight)dt}  = \int\limits_0^{\frac{k}{4}} {\left( { - 4t + k} ight)dt}

    = \left. {\left( { - 2{t^2} + kt} ight)} ight|_0^{\frac{k}{4}} = \frac{{ - {k^2}}}{8} + \frac{{{k^2}}}{4} = 56 \Rightarrow k = 8\sqrt 7 \left( {m/s} ight)

  • Câu 6: Vận dụng cao
    Tính tích phân I

    Cho hàm số y = f\left( x ight) liên tục và dương trên \mathbb{R}, hình phẳng giới hạn bởi các đường y = g\left( x ight) = \left( {x - 1} ight)f\left( {{x^2} - 2x + 1} ight), trục hoành và x = 1;x = 2 có diện tích bằng 5. Tính tích phân I = \int\limits_0^1 {f\left( x ight)dx}

    Hướng dẫn:

    Ta có: J = \int\limits_1^1 {\left| {\left( {x - 1} ight)f{{\left( {x - 1} ight)}^2}} ight|dx}  = 5

    Đặt t = x - 1 ta được:

    J = \int\limits_0^1 {t.f\left( {{t^2}} ight)dt}  = 5 \Rightarrow \int\limits_0^1 {f\left( {{t^2}} ight)d\left( {{t^2}} ight)}  = 10

    => I = \int\limits_0^1 {f\left( x ight)dx}  = 10

  • Câu 7: Vận dụng cao
    Tính thể tích V của nước có trong bể

    Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

    Tính thể tích V của nước có trong bể

    Hướng dẫn:

    Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

    Tính thể tích V của nước có trong bể

    Phương trình đường elip đáy khi đó có phương trình \frac{{{x^2}}}{{0,{5^2}}} + \frac{{{y^2}}}{{0,{4^2}}} = 1

    Khi đó chiều cao của mép nước trong bể với đường thẳng y=2

    Xét phương trình 0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}}  = 0,2 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{4}

    Diện tích phần mặt chứa nước là:

    S = 0,5.0,4.\pi  - \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}} } ight)} dx \approx 0,506

    Do đó thể tích nước trong thùng là: V = 3S \approx 1,52{m^3}

  • Câu 8: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight) = \frac{{ - x - 2}}{{x - 1}}, trục hoành và các đường thẳng x =  - 1;x = 0

    Hướng dẫn:

     Gọi S là diện tích của hình phẳng trên ta có: S = \int\limits_{ - 1}^0 {\left| {\frac{{ - x - 2}}{{x - 1}}} ight|dx}

    Ta có: \frac{{ - x - 2}}{{x - 1}} \geqslant 0;\forall x \in \left[ { - 1;0} ight]

    Khi đó:

    \begin{matrix}  S = \int\limits_{ - 1}^0 {\left| {\dfrac{{ - x - 2}}{{x - 1}}} ight|dx}  = \int\limits_{ - 1}^0 {\left( {\dfrac{{ - x - 2}}{{x - 1}}} ight)dx}  \hfill \\   = \int\limits_{ - 1}^0 {\dfrac{{ - \left( {x - 1} ight) - 3}}{{x - 1}}dx}  = \int\limits_{ - 1}^0 {\left( { - 1 - \dfrac{3}{{x - 1}}} ight)dx}  \hfill \\   = \left. {\left( { - x - 3\ln \left| {x - 1} ight|} ight)} ight|_{ - 1}^0 = 3\ln 2 - 1 \hfill \\ \end{matrix}

  • Câu 9: Nhận biết
    Công thức thể tích khối tròn xoay

    Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số y = f\left( x ight), trục Ox và hai đường thẳng x = a;x = b,\left( {a < b} ight) xung quanh trục Ox.

    Hướng dẫn:

    Thể tích của khối tròn xoay cần tính là: V = \pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 10: Vận dụng cao
    Kết luận nào sau đây là đúng?

    Cho hàm số y = f\left( x ight) có đạo hàm liên tục trên đoạn \left[ { - 3;3} ight] và đồ thị hàm số y = f'\left( x ight) (như hình vẽ). biết f\left( 1 ight) = 6g\left( x ight) = f\left( x ight) - \frac{{{{\left( {x + 1} ight)}^2}}}{2}. Kết luận nào sau đây là đúng?

    Kết luận nào sau đây là đúng

    Hướng dẫn:

    Hình vẽ minh họa:

    Kết luận nào sau đây là đúng

    Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( x ight) - \left( {x + 1} ight) \hfill \\  g'\left( x ight) = 0 \Rightarrow f'\left( x ight) = x + 1 \hfill \\ \end{matrix}

    Từ đồ thị ta thấy g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {x = 1} \\   {x = 3} \end{array}} ight.

    Từ đồ thị ta thấy

    \begin{matrix}  \int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{ABCD}}}  \hfill \\   \Leftrightarrow f\left( 1 ight) - f\left( { - 3} ight) > 6 \hfill \\   \Leftrightarrow f\left( { - 3} ight) < 0 \hfill \\ \end{matrix}

    => g\left( { - 3} ight) = f\left( { - 3} ight) - 2 < 0

    Mặt khác

    \begin{matrix}\int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{OEFG}}}  \hfill \\   \Leftrightarrow f\left( 3 ight) - f\left( 1 ight) > 2 \hfill \\   \Leftrightarrow f\left( 3 ight) > 8 \Rightarrow G\left( 3 ight) > 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Kết luận nào sau đây là đúng

    => g\left( x ight) = 0 có duy nhất nghiệm trên \left[ { - 3;3} ight]

  • Câu 11: Vận dụng cao
    Tìm điều kiện của a và b

    Trong hệ trục tọa độ Oxy, cho parabol \left( P ight):y = {x^2} và hai đường thẳng y = a;y = b;\left( {0 < a < b} ight) (mô tả như hình vẽ). Gọi {S_1} là diện tích hình phẳng giới hạn bới và đường thẳng y=a (phần tô màu đen); S_2 là diện tích hình phẳng giới hạn bới parabol \left( P ight) và đường thẳng y=b (phần gạch chéo). Với điều kiện nào sau đây của a,b thì {S_1} = 2{S_2}?

    Tìm điều kiện của a và b

    Hướng dẫn:

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=b là:

    {x^2} = b \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt b } \\   {x =  - \sqrt b } \end{array}} ight.

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=a là:

    {x^2} = a \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt a } \\   {x =  - \sqrt a } \end{array}} ight.

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=b là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt b } {{{\left( {b - x} ight)}^2}dx}  = \left. {2\left( {bx - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt b } \hfill \\   = 2\left( {b\sqrt b  - \dfrac{{b\sqrt b }}{3}} ight) = \dfrac{{4b\sqrt b }}{3} \hfill \\ \end{matrix}

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=a là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt a } {{{\left( {a - x} ight)}^2}dx}  = \left. {2\left( {ax - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt a } \hfill \\   = 2\left( {a\sqrt a  - \dfrac{{a\sqrt a }}{3}} ight) = \dfrac{{4a\sqrt a }}{3} \hfill \\ \end{matrix}

    Khi đó: {S_1} = 2{S_2} \Leftrightarrow \frac{{4b\sqrt b }}{3} = 2\frac{{4a\sqrt a }}{3} \Rightarrow b = \sqrt[3]{4}a

     

  • Câu 12: Vận dụng
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi y = \left| {2{x^2} - 4x} ight|;y = x + 3

    Hướng dẫn:

     Xét phương trình hoành độ giao điểm ta có:

    \begin{matrix}  \left| {2{x^2} - 4x} ight| = x + 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \geqslant 0} \\   {2{x^2} - 4x = x + 3} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \leqslant 0} \\   { - \left( {2{x^2} - 4x} ight) = x + 3} \end{array}} ight.} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{1}{2}} \\   {x = 3} \end{array}} ight. \hfill \\ \end{matrix}

    Diện tích hình phẳng cần tính là:

    \begin{matrix}  S = \int_{ - \dfrac{1}{2}}^3 | |2{x^2} - 4x| - x - 3|{\text{d}}x \hfill \\   = \left| {\int_{ - \dfrac{1}{2}}^0 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| + \left| {\int_0^2 {\left( { - 2{x^2} + 3x - 3} ight)} {\text{d}}x} ight| + \left| {\int_2^3 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| \hfill \\   = \dfrac{{19}}{{24}} + \dfrac{{16}}{3} + \dfrac{{17}}{6} = \dfrac{{215}}{{24}}({\text{dvdt}}) \hfill \\ \end{matrix}

  • Câu 13: Vận dụng
    Tính bán kính của thân cây sau 20 năm

    Tốc độ tăng trưởng bán kính của thân cây được tính bằng công thức f\left( t ight) = 1,5 + \sin \left( {\frac{{\pi t}}{5}} ight), trong đó t là thời gian khảo sát (tính theo năm), là thời điểm đầu khảo sát, F(t) là bán kính của thân cây tại thời điểm tF’(t) = f(t). Tính bán kính của thân cây sau 20 năm kể từ lúc bắt đầu khảo sát, biết rằng bán kính cây tại thời điểm bắt đầu khảo sát là 5cm.

    Hướng dẫn:

     Ta có: F\left( t ight) = \int {\left( {1,5 + \sin \frac{{\pi t}}{5}} ight)} dt = \left( {1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5}} ight) + C

    Từ giả thiết ta có: F\left( 0 ight) = 5 \Rightarrow C = 5 + \frac{5}{\pi }

    => F\left( t ight) = 1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5} + 5 + \frac{5}{\pi }

    Sau 5 năm bán kính thân cây bằng F\left( {20} ight) = 1,5.20 - \frac{5}{\pi }\cos \frac{{\pi .20}}{5} + 5 + \frac{5}{\pi } = 40\left( {cm} ight)

  • Câu 14: Vận dụng
    Hoành độ điểm A thuộc khoảng nào dưới đây?

    Cho đường cong (C) y = {x^3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: y' = 3{x^2}

    Ta có: A \in \left( C ight) \Rightarrow A\left( {a;{a^3}} ight);a > 0

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3{a^2}\left( {x - a} ight) + {a^3}

    Ta có phương trình hoành độ giao điểm d và (C) là:

    \begin{matrix}  {x^3} = 3{a^2}\left( {x - a} ight) + {a^3} \hfill \\   \Leftrightarrow {\left( {x - a} ight)^2}\left( {x + 2a} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x =  - 2a} \end{array}} ight. \hfill \\ \end{matrix}

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C).

    Ta có:

    \begin{matrix}  S = 27 \hfill \\   \Rightarrow \int\limits_{ - 2a}^a {\left| {{x^3} - 3{a^2}\left( {x - a} ight) - {a^3}} ight|dx = 27}  \hfill \\   \Rightarrow \left| {\int\limits_{ - 2a}^a {\left( {{x^3} - 3{a^2}\left( {x - a} ight) - {a^3}} ight)dx} } ight| = 27 \hfill \\   \Rightarrow \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{3{a^2}{x^2}}}{2} + 2{a^3}x} ight)} ight|_{ - 2a}^a} ight| = 27 \hfill \\   \Leftrightarrow \dfrac{{27}}{4}{a^4} = 27 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {a = \sqrt 2 \left( {tm} ight)} \\   {a =  - \sqrt 2 \left( {ktm} ight)} \end{array}} ight. \Rightarrow a = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 15: Nhận biết
    Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3

    Một chất điểm dạng chuyển động với vận tốc {v_0} = 15\left( {m/s} ight) thì tăng tốc với gia tốc a\left( t ight) = {t^2} + 5t\left( {m/s} ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Hướng dẫn:

     Ta có: v\left( t ight) = \int {a\left( t ight)dt = \int {\left( {{t^2} + 5t} ight)} dt = \frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + C\left( {m/s} ight)}

    Do khi bắt đầu tăng tốc {v_0} = 15\left( {m/s} ight) nên

    {v_{\left( {t = 0} ight)}} = 15 \Rightarrow C = 18 \Rightarrow v\left( t ight) = v\left( t ight) = \frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + 15\left( {m/s} ight)

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô tăng tốc bằng:

    S = \int\limits_0^3 {v\left( t ight)dt}  = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + 15} ight)dt}  = \frac{{297}}{4}\left( m ight)

  • Câu 16: Thông hiểu
    Tính diện tích S của hình phẳng

    Tính diện tích S của hình phẳng giới hạn bới đồ thị của hàm số y = {e^x} + x và các đường thẳng x - y + 1 = 0;x = \ln 5 là:

    Hướng dẫn:

     Ta có: x - y + 1 = 0 \Rightarrow y = x + 1

    Phương trình hoành độ giao điểm của hai đồ thị là

    {e^x} + x = x + 1 \Leftrightarrow {e^x} = 1 \Rightarrow x = 0

    Diện tích hình phẳng cần tìm là:

    \begin{matrix}  S = \int\limits_0^{\ln 5} {\left| {{e^x} - 1} ight|dx}  = \int\limits_0^{\ln 5} {\left( {{e^x} - 1} ight)dx}  \hfill \\   = \left. {\left( {{e^x} - x} ight)} ight|_0^{\ln 5} = 4 - \ln 5 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao
    Tính tổng S

    Tính tổng S = \frac{{{2^2}}}{2}C_{2018}^1 + \frac{{{2^3}}}{3}C_{2018}^2 + \frac{{{2^4}}}{4}C_{2018}^3 + .... + \frac{{{2^{2019}}}}{{2019}}C_{2018}^{2018}

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {\left( {1 + x} ight)^{2018}} = 1 + C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\   \Rightarrow {\left( {1 + x} ight)^{2018}} - 1 = C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\ \end{matrix}

    Khi đó ta có:

    \begin{matrix}  \int\limits_0^2 {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]dx = \int\limits_0^2 {\left( {C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}}} ight)dx} }  \hfill \\   \Leftrightarrow \left. {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]} ight|_0^2 = \left. {\left( {\dfrac{{{x^2}}}{2}C_{2018}^1 + \dfrac{{{x^3}}}{3}C_{2018}^2 + ... + \dfrac{{{x^{2019}}}}{{2019}}C_{2019}^{2019}} ight)} ight|_0^2 \hfill \\   \Leftrightarrow S = \dfrac{{{3^{2019}}}}{{2019}} - 2 - \dfrac{1}{{2019}} = \dfrac{{{3^{2019}} - 4039}}{{2019}} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết
    Tính thể tích khối tròn xoay

    Cho hình phẳng \left( H ight) giới hạn với các đường y = {x^2};y = 0;x = 2. Tính thể tích V của khối tròn xoay thu được khi \left( H ight) quay quanh trục Ox?

    Hướng dẫn:

    Thể tích cần tìm là:

    V = \pi \int\limits_0^2 {{x^4}dx}  = \left. {\pi .\frac{{{x^5}}}{5}} ight|_0^2 = \frac{{32\pi }}{5}

  • Câu 19: Nhận biết
    Tính thể tích V

    Cho hình phẳng D giới hạn bởi đường cong y = \sqrt {2 + \cos x}, trục hoành và các đường thẳng x = 0;x = \frac{\pi }{2}. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V là:

    Hướng dẫn:

    Thể tích cần tính là:

    \begin{matrix}  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {\sqrt {2 + \cos x} } ight)}^2}dx}  \hfill \\   \Rightarrow V = \pi \int\limits_0^{\frac{\pi }{2}} {\left( {2 + \cos x} ight)dx}  \hfill \\   \Rightarrow V = \left. {\pi \left( {2 + \sin x} ight)} ight|_0^{\frac{\pi }{2}} = \pi \left( {\pi  + 1} ight) \hfill \\ \end{matrix}

     

  • Câu 20: Thông hiểu
    Quãng đường đi được của ô tô sau khi đạp phanh

    Một ô tô đang chạy với vận tốc 20m/s thì dừng lái đạp phanh. Sau khi đạp phanh, ô tô di chuyển động chậm dần đều với vận tốc v\left( t ight) = 20 - 40t\left( {m/s} ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

    Hướng dẫn:

     Khi dừng hẳn \Rightarrow v\left( t ight) = 0 \Rightarrow 20 - 40t = 0 \Rightarrow t = 0,5\left( s ight)

    Quãng đường xe đi được từ khi đạp phan đến lúc dừng hẳn là:

    S = \int\limits_0^{\frac{1}{2}} {v\left( t ight)d\left( t ight)}  = \int\limits_0^{\frac{1}{2}} {\left( {20 - 40t} ight)d\left( t ight)}  = 5\left( m ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Sắp xếp theo