Luyện tập Khảo sát hàm số (Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị của biểu thức M

    Cho hàm số y = \frac{{ax + b}}{{cx + 1}}\left( C ight) có bảng biến thiên như hình vẽ:

    Tính giá trị của biểu thức M

    Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn {S_{OAB}} = 4. Tính giá trị của biểu thức M = ab + 2c?

    Hướng dẫn:

    Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2

    => Hàm số có dạng y = \frac{{2x + b}}{{x + 1}}

    => \left\{ {\begin{array}{*{20}{c}}  {\left( C ight) \cap Ox = A\left( {\frac{{ - b}}{2};0} ight)} \\   {\left( C ight) \cap Oy = B\left( {0;b} ight)} \end{array}} ight. \Rightarrow {S_{OAB}} = \frac{{{b^2}}}{2} = 4 \Rightarrow b =  \pm 4

    Ta có:

    \begin{matrix}  y' = \dfrac{{2 - b}}{{{{\left( {x + 1} ight)}^2}}} < 0 \Rightarrow b = 4 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2} \\   {b = 4} \\   {c = 1} \end{array} \Rightarrow M = ab + 2c = 10} ight. \hfill \\ \end{matrix}

  • Câu 2: Vận dụng
    Giá trị của biểu thức

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 3: Vận dụng
    Chọn đồ thị ứng với hàm số đã cho

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

  • Câu 4: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 5: Vận dụng
    Hàm số đồng biến trên khoảng nào dưới đây

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ sau:

    Hàm số đồng biến trên khoảng nào dưới đây

    Hỏi hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f'\left( x ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < x < 0} \\   {x > 1} \end{array}} ight. \hfill \\   \Rightarrow y' = 2f'\left( {2x - 1} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < 2x - 1 < 0} \\   {2x - 1 > 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {0 < x < \dfrac{1}{2}} \\   {x > 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đó hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng \left( {\frac{1}{4};\frac{1}{3}} ight)

  • Câu 6: Thông hiểu
    Tìm m để phương trình có hai nghiệm phân biệt

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình f\left( x ight) = 2m có đúng hai nghiệm phân biệt.

    Tìm m để phương trình có hai nghiệm phân biệt

    Hướng dẫn:

    Để phương trình f\left( x ight) = 2m có hai nghiệm phân biệt thì \left[ {\begin{array}{*{20}{c}}  {2m = 0} \\   {2m <  - 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 0} \\   {m < \dfrac{{ - 3}}{2}} \end{array}} ight.

  • Câu 7: Vận dụng
    Giá trị của biểu thức K

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Hướng dẫn:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 8: Thông hiểu
    Mệnh đề nào dưới đây đúng

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng
    Hướng dẫn:

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 9: Thông hiểu
    Khẳng định nào sau đây là sai

    Cho hàm số có bảng biến thiên như hình vẽ:

    Khẳng định nào sau đây là sai

    Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Dựa vào bảng biến thiên suy ra hàm số đã cho có hai điểm cực đại và một điểm cực tiểu

    Giá trị lớn nhất của hàm số trên tập số thực bằng 4

    Hàm số có ba cực trị nên ab < 0 mà c = 0 => ab\left( {c + 1} ight) < 0

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số có đồ thị như hình vẽ sau:

    Chọn mệnh đề đúng

    Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  + \infty } \end{array}} ight. \Rightarrow a < 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có 

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b > 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} < 0 \Rightarrow c > 0} \end{array}} ight.

  • Câu 11: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số bậc ba có bảng biến thiên như sau:

    Chọn đáp án đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Quan sát bảng biến thiên ta suy ra a < 0

    Ta có: có hai nghiệm dương nên \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - 2b}}{{3a}} > 0} \\   {{x_1}.{x_2} = \dfrac{c}{{3a}} > 0} \end{array}} ight. \Rightarrow b > 0;c < 0

  • Câu 13: Thông hiểu
    Khẳng định nào dưới đây sai

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 14: Nhận biết
    Xác định hàm số y = f(x)

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)
    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 15: Nhận biết
    Hàm số y = f(x) là hàm số nào?

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ dưới đây

    Hàm số y = f(x) là hàm số nào

    Hàm số y = f(x) là hàm số nào trong các hàm số sau:

    Hướng dẫn:

     Dựa vào bảng biến thiên ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và C

    Mặt khác hàm số đạt cực trị tại x = 0 và x = 2

    => Loại đáp án D

  • Câu 16: Nhận biết
    Đồ thị của hàm số

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 17: Nhận biết
    Đồ thị hàm số ứng với hàm số nào

    Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Đồ thị hàm số ứng với hàm số nào

    Hướng dẫn:

     Dựa vào đồ thị hàm số ta thấy

    Đồ thị hàm số cắt trục tung tại điểm \left( {0;d} ight)

    => d > 0 => Loại đáp án  y = {x^3} - 4x - 1

    Mặt khác \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0 => Loại đáp án y =  - {x^3} + 4x + 2

    Hàm số đạt cực trị tại hai điểm {x_1};{x_2}, dựa vào hình vẽ ta thấy {x_1};{x_2} trái dấu

    => Loại đáp án y = {x^3} + 3{x^2} + 1

    Vậy đáp án là y = {x^3} - 4x + 1

  • Câu 18: Thông hiểu
    Chọn khẳng định đúng

    Cho đồ thị hàm số có đồ thị như hình vẽ:

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận đứng là: x = \frac{{ - d}}{c} và tiệm cận ngang là y = \frac{a}{c} ta có:

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - d}}{c} > 0} \\   {\dfrac{a}{c} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {cd < 0} \\   {ac > 0} \end{array}} ight.

    Đồ thị hàm số cắt Ox tại \left( {\frac{{ - b}}{a};0} ight), cắt Oy tại \left( {0;\frac{b}{d}} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - b}}{a} > 0} \\   {\dfrac{b}{d} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {ab < 0} \\   {bd > 0} \end{array}} ight.

    Với a > 0 \Rightarrow b < 0;c > 0;d < 0

    Với a < 0 \Rightarrow b > 0;c < 0;d > 0

  • Câu 19: Nhận biết
    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Hướng dẫn:

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 20: Thông hiểu
    Chọn khẳng định đúng trong các khẳng định dưới đây

    Cho hàm số có đồ thị hàm số như hình vẽ.

    Chọn khẳng định đúng trong các khẳng định dưới đây

    Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  - \infty => Hệ số a < 0 => Loại đáp án C và D

    Đồ thị hàm số đi qua điểm \left( {0;d} ight) => d > 0

    Hàm số có ba cực trị => ab < 0

    Do a < 0 => b > 0

    Đồ thị hàm số đi qua điểm có tọa độ \left( {0;c} ight) => c > 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 14 lượt xem
Sắp xếp theo