Luyện tập Hệ toạ độ trong không gian (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm tọa độ

    Cho M trên đường thẳng AB với A\left( {{x_A},{y_A},{z_A}} ight)B\left( {{x_B},{y_B},{z_B}} ight). Nếu \overrightarrow {AM}  = k.\overrightarrow {BM} với k e  - 1 thì tọa độ của M là:

    Hướng dẫn:

    Vì M nằm trên AB và nên \overrightarrow {AM}  = k.\overrightarrow {BM}khi xét theo tọa độ vecto 2 điểm A và B, ta có:

     \begin{array}{l}\overrightarrow {AM}  = k\overrightarrow {MB}  \Leftrightarrow \left\{ \begin{array}{l}x - {x_A} = k\left( {{x_B} - x} ight)\\y - {y_A} = k\left( {{y_B} - y} ight)\\z - {z_A} = k\left( {{z_B} - z} ight)\end{array} ight.\\ \Rightarrow M\left( {x = \dfrac{{{x_A} + k{x_B}}}{{1 + k}},y = \dfrac{{{y_A} + k{y_B}}}{{1 + k}},z = \dfrac{{{z_A} + k{z_B}}}{{1 + k}}} ight)\end{array}

  • Câu 2: Thông hiểu
    Trọng tâm tam giác

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x, y để G\left( {2, - 1, - \frac{2}{3}} ight) là trọng tâm tam giác ABC?

    Hướng dẫn:

     Vì G là trọng tâm tam giác ABC nên áp dụng công thức, ta có:

    \left\{ \begin{array}{l}{x_A} + {x_B} + {x_c} = 3.{x_G}\\{y_A} + {y_B} + {y_c} = 3.{y_G}\\{z_A} + {z_B} + {z_c} = 3.{z_G}\end{array} ight.

    Thay tọa độ các điểm vào ta được hệ sau:

    \left\{ \begin{array}{l}3 + 2 + x = 3.2 = 6\\1 + 1 + y = 3\left( { - 1} ight) =  - 3\\0 - 1 - 1 = 3\left( { - \dfrac{2}{3}} ight) =  - 2\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 5\end{array} ight.

  • Câu 3: Vận dụng cao
    Hình SABC là?

    Cho bốn điểm S\left( {1,2,3} ight);\,\,A\left( {2,2,3} ight);\,\,B\left( {1,3,3} ight);\,\,C\left( {1,2,4} ight)

    Hình SABC là:Hình chóp đều || hình chóp đều || Chóp đều || chóp đều

    Đáp án là:

    Cho bốn điểm S\left( {1,2,3} ight);\,\,A\left( {2,2,3} ight);\,\,B\left( {1,3,3} ight);\,\,C\left( {1,2,4} ight)

    Hình SABC là:Hình chóp đều || hình chóp đều || Chóp đều || chóp đều

    Để biết hình SABC là hình gì, ta cần xét và tính các cạnh, tìm cạnh bằng nhau và kiểm tra tích có hướng của các vecto (tính đồng phẳng). 

    Theo đề bài, ta tính và xét các vecto:

    \overrightarrow {AB}  = \left( { - 1;1;0} ight);\,\overrightarrow {BC}  = \left( {0; - 1;1} ight);\,\overrightarrow {AC}  = \left( { - 1;0;1} ight)

    \Rightarrow AB = BC = CA = \sqrt 2  \Rightarrow ABC là tam giác đều

    Ta có:

    \overrightarrow {SA}  = \left( {1;0;0} ight);\,\overrightarrow {SB}  = \left( {0;1;0} ight);\,\overrightarrow {SC}  = \left( {0;0;1} ight)

    \Rightarrow SA = SB = SC = 1.

    Xét:   D\left( {SA,SB,SC} ight) = \left| \begin{array}{l}1\,\,\,\,\,0\,\,\,\,\,0\\0\,\,\,\,\,1\,\,\,\,\,1\\0\,\,\,\,\,0\,\,\,\,\,1\end{array} ight| = 1 e 0

    \Rightarrow \overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC}không đồng phẳng

    \Rightarrow SABC là hình chóp đều, đỉnh S.

    Hình SABC

  • Câu 4: Thông hiểu
    Tìm E cách đều 3 điểm

    Cho ba điểm A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm điểm E trên mặt phẳng (xOy) cách đều A, B, C.

    Hướng dẫn:

     Gọi E\left( {x,y,0} ight)  trên mặt phẳng (xOy).

    Ta có:EA =EB=EC

    \Rightarrow \left\{ \begin{array}{l}A{E^2} = B{E^2}\\A{E^2} = C{E^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 3} ight)^2} + {\left( {y + 2} ight)^2} + {1^2}\\{\left( {x - 2} ight)^2} + {\left( {y + 1} ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 1} ight)^2} + {\left( {y - 3} ight)^2} + {\left( { - 4} ight)^2}\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x - y = 4\\x - 4y =  - 10\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{26}}{3}\\y = \dfrac{{14}}{3} \Rightarrow E\left( {\dfrac{{26}}{3},\dfrac{{14}}{3},0} ight)\end{array} ight.

  • Câu 5: Nhận biết
    Tìm câu sai

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

    Hướng dẫn:

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 6: Thông hiểu
    Ba điểm thẳng hàng

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x và y để ba điểm A, B, C đã cho thẳng hàng với nhau?

    Gợi ý:

     Áp dụng điều kiện để 3 điểm thẳng hàng :

    A, B, C thẳng hàng \Leftrightarrow \overrightarrow {AB}  cùng phương với \overrightarrow {AC} rồi xét hệ

    Hướng dẫn:

     A, B, C thẳng hàng \Leftrightarrow \overrightarrow {AB} cùng phương với \overrightarrow {AC}

    \Leftrightarrow \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {y - 1} ight) - 0\left( {x - 3} ight) = 0\\0\left( { - 1} ight) - \left( { - 1} ight)\left( {y - 1} ight) = 0\\ - 1\left( {x - 3} ight) - \left( { - 1} ight)\left( { - 1} ight) = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} ight.

  • Câu 7: Vận dụng
    Vecto cùng phương

    Cho hai vectơ \overrightarrow a  = \,\,\left( {2, - 1,1} ight);\,\,\overrightarrow b  = \,\,\left( { - 2,3,1} ight). Xác định vectơ \vec c, biết \vec c cùng phương với \vec a và \vec a .\vec c=-4

    Hướng dẫn:

    Gọi tọa độ của \vec c  là \overrightarrow c  = \left( {{c_1};{c_2};{c_3}} ight)

    Theo đề bài, ta có \vec c cùng phương \overrightarrow a  \Leftrightarrow \frac{{{c_1}}}{2} = \frac{{{c_2}}}{{ - 1}} = \frac{{{c_3}}}{1}

    \Rightarrow {c_1} = 2{c_3};\,{c_2} =  - {c_3}

    Mặt khác, \vec a .\vec c=-4, thay vào ta được:

    \begin{array}{l}\overrightarrow a .\overrightarrow c  =  - 4\\ \Leftrightarrow 2{c_1} - {c_2} + {c_3} =  - 4\\ \Leftrightarrow 4{c_3} + {c_3} + {c_3} =  - 4\\ \Leftrightarrow {c_3} =  - \dfrac{2}{3}\end{array}

    \begin{array}{l} \Rightarrow {c_1} = 2{c_3} =  - \dfrac{4}{3};\,{c_2} = \dfrac{2}{3}\\ \Rightarrow \overrightarrow c  = \left( { - \dfrac{4}{3};\dfrac{2}{3}; - \dfrac{2}{3}} ight)\end{array}

  • Câu 8: Vận dụng
    Tìm m

    Cho hai vectơ \overrightarrow V  = \,m\overrightarrow a \,\, - \,\,2\overrightarrow b\overrightarrow W  = \,m\overrightarrow b \,\, - \,\,\overrightarrow avới \overrightarrow a  = \left( {2,\,1,\, - 1} ight)\overrightarrow b  = \left( {1,\, - 2,\,1} ight).Tìm m để \overrightarrow V\overrightarrow W vuông góc.

    Hướng dẫn:

     Điều kiện để

    \overrightarrow V vuông góc \overrightarrow W  \Leftrightarrow \left( {m\overrightarrow a  - 2\overrightarrow b } ight)\left( {m\overrightarrow b  - \overrightarrow a } ight) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)

    Với {\overrightarrow a ^2} = 6;\,{\overrightarrow b ^2} = 6;\,\overrightarrow a .\overrightarrow b  =  - 1

    \begin{array}{l}\left( 1 ight) \Leftrightarrow {m^2} + 18m + 2 = 0\\\,\,\,\,\,\,\,\, \Leftrightarrow m =  - 9 \pm \sqrt {79} \end{array}

  • Câu 9: Vận dụng
    Viết phương trình mặt cầu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)

    Hướng dẫn:

     Phương trình của \left( {S'} ight):\left( S ight) + m\left( P ight) = 0,\,\,m e 0

    \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 + m\left( {3x + 2y + 6z + 1} ight) = 0

    (S') qua M\left( {1, - 2,1} ight) \Rightarrow 6m + 18 = 0 \Leftrightarrow m =  - 3

    \Rightarrow \left( {S'} ight):{x^2} + {y^2} + {z^2} - 5x - 8y - 12z - 5 = 0

  • Câu 10: Vận dụng
    Phân tích vecto

    Phân tích vectơ \overrightarrow V  = \left( {4\,,\,3\,,\, - 5\,} ight) theo ba vectơ không đồng phẳng

    \overrightarrow a  = \left( {2, - 1,1} ight);\,\,\overrightarrow b  = \left( {1, - 3,2} ight);\,\,\overrightarrow c  = \left( { - 3,2, - 2} ight).

    Hướng dẫn:

    Ta có 3 vecto \overrightarrow a ;\,\,\,\overrightarrow b ;\,\,\,\overrightarrow c không đồng phẳng. Khi đó luôn có :

    \begin{array}{l}\exists m,n,p \in \mathbb R :m\overrightarrow a  + n\overrightarrow b  + p\overrightarrow c  = \overrightarrow V \\ \Leftrightarrow \left\{ \begin{array}{l}2m + n - 3p = 4 & \left( 1 ight)\\ - m - 3n + 2p = 3 & \left( 2 ight)\,\,\,\,\,;\left( 2 ight) + \left( 3 ight) \Rightarrow n = 2\\m + 2n - 2p =  - 5 & \left( 3 ight)\end{array} ight.\\ \Rightarrow \left\{ \begin{array}{l}2m - 3p = 2 & \left( {1'} ight)\\ - m + 2p = 9 & \left( {2'} ight)\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}m = 31\\p = 20\end{array} ight.\\ \Rightarrow \overrightarrow V  = 31\overrightarrow a  + 2\overrightarrow b  + 20\overrightarrow c \end{array}

  • Câu 11: Thông hiểu
    Tìm điểm N cách đều

    Cho ba điểm A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight).

    Tìm điểm N trên x’Ox cách đều A và B.

    Hướng dẫn:

     Gọi N(x, 0, 0) trên x'Ox

    Ta có A{N^2} = B{N^2}

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( 1 ight)^2} + {\left( { - 1} ight)^2} = {\left( {x - 3} ight)^2} + {\left( 2 ight)^2} + {1^2}

    \Leftrightarrow x = 4 \Rightarrow N\left( {4,0,0} ight)

  • Câu 12: Nhận biết
    Tọa độ trọng tâm tam giác

    Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight).

    Tìm tọa độ trọng tâm G của tam giác ABC đã cho?

    Hướng dẫn:

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:

    \Rightarrow G\left\{ \begin{array}{l}x = \frac{1}{3}\left( {2 - 1 + 4} ight) = \dfrac{5}{3}\\y = \frac{1}{3}\left( {4 + 3 - 2} ight) = \dfrac{5}{3}\\z = \frac{1}{3}\left( { - 3 - 2 + 3} ight) = \dfrac{{ - 2}}{3}\end{array} ight.

  • Câu 13: Vận dụng cao
    Tam giác ABC là?

    Cho ba điểm A\left( {3,\frac{9}{5},\frac{{12}}{5}} ight);\,\,B\left( {4,0,0} ight);\,\,C\left( {0,\frac{6}{5},\frac{8}{5}} ight).

    Tam giác ABC là tam giác?

    Hướng dẫn:

    Để biết tam giác ABC là tam giác gì, ta cần xét tích vô hướng (tính chất có 1 góc vuông) và kiểm tra độ dài 3 cạnh AB, BC, CA (tính cân, đều) của tam giác. Ta có:

    \overrightarrow {AB}  = \left( {1; - \frac{9}{5}; - \frac{{12}}{5}} ight);\,

    \overrightarrow {AC}  = \left( { - 3; - \frac{3}{5}; - \frac{4}{5}} ight)

    \overrightarrow {AB} .\overrightarrow {AC}  =  - 3 + \frac{{27}}{{25}} + \frac{{48}}{{25}} =  - 3 + 3 = 0 \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AC}

    Suy ra tam giác ABC có góc \hat A = 90^0nên vuông tại A.

    Ta tiếp tục xét tính cân: 

    {\overrightarrow {AB} ^2} = 1 + \frac{{81}}{{25}} + \frac{{144}}{{25}} = 10;

    {\overrightarrow {AC} ^2} = 9 + \frac{9}{{25}} + \frac{{16}}{{25}} = 10

    Vậy tam giác ABC vuông cân tại A.

  • Câu 14: Vận dụng
    Thể tích hình lăng trụ

    Tính thể tích hình lăng trụ ABCD.EFGH, biết \overrightarrow {AB}  = \left( {2, - 4,3} ight);\overrightarrow {EH}  = \left( {3, - 2,1} ight)\overrightarrow {CG}  = \left( { - 1,3, - 2} ight).

    Gợi ý:

     Áp dụng công thức tính thể tích lăng trụ: {V_{ABCDEFGH}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight|

    Hướng dẫn:

    Theo đề bài, ta có:

     \overrightarrow {AB}  = \left( {2, - 4,3} ight);\,

    \,\overrightarrow {AD}  = \overrightarrow {EH}  = \left( {3, - 2,1} ight);\,

    \overrightarrow {AE}  = \overrightarrow {CG}  = \left( { - 1,3, - 2} ight)

    Áp dụng CT tính thể tích khối lăng trụ:{V_{ABCDEFGH}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight| 

    Suy ra: \begin{array}{l}V = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } ight].\overrightarrow {AE} } ight|\\\,\,\,\,\, = \left| {\left| {\begin{array}{*{20}{c}}2&{ - 4}&3\\3&{ - 2}&1\\{ - 1}&3&{ - 2}\end{array}} ight|} ight|\\\,\,\,\,\, = \left| {2 - 20 + 21} ight| = 3\end{array}.

  • Câu 15: Nhận biết
    Tính góc

    Tính góc của hai vectơ \overrightarrow a  = \,\left( { - 4,2,4} ight);\,\,\,\,\,\overrightarrow b  = \,\left( {2\sqrt 2 , - 2\sqrt 2 ,0} ight)

    Hướng dẫn:

     Áp dụng công thức tính góc giữa 2 vecto, ta có:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|}} = \frac{{x.x' + y.y'}}{{\sqrt {{x^2} + {y^2}} .\sqrt {x{'^2} + y{'^2}} }}

    Thay số suy ra được:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{ - 8\sqrt 2  - 4\sqrt 2  + 0}}{{\sqrt {36} .\sqrt {16} }} = \frac{{ - \sqrt 2 }}{2} \Rightarrow \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = {135^0}

  • Câu 16: Thông hiểu
    Tọa độ giao điểm

    Cho ba điểm  A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm tọa độ giao điểm của đường thẳng AB và mặt phẳng (yOz)

    Hướng dẫn:

    Gọi M\left( {0,y,z} ight)  là giao điểm của đường thẳng AB và mặt phẳng (yOz).

    Ta có \overrightarrow {AM}  = \left( { - 2,y + 1,z - 1} ight)\overrightarrow {AB}  = \left( {1, - 1, - 2} ight) cùng phương.

    \Rightarrow \frac{{ - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 2}} \Rightarrow x = 0;y = 1;z = 5 \Rightarrow M\left( {0,1,5} ight)

  • Câu 17: Nhận biết
    Vecto trung tuyến

    Trong không gian Oxyz cho tam giác ABC, biết: A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight). Tìm tọa độ vectơ trung tuyến \overrightarrow {AM}

    Hướng dẫn:

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ 2 điểm tương ứng là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vậy ta được: B\left( { - 1,3, - 2} ight);\,C(4, - 2,3).

    \overrightarrow {AM} là vecto trung tuyến của tam giác ABC nên M là trung điểm của BC. Suy ra M có tọa độ là: M\left( {\frac{3}{2},\frac{1}{2},\frac{1}{2}} ight).

    Suy ra ta có \overrightarrow {AM}  = \left( {\frac{3}{2} - 2,\frac{1}{2} - 4,\frac{1}{2} + 3} ight) = \left( { - \frac{1}{2},\frac{{ - 7}}{2},\frac{7}{2}} ight)

    Vậy \overrightarrow {AM}  = \left( { - \frac{1}{2}, - \frac{7}{2},\frac{7}{2}} ight).

  • Câu 18: Nhận biết
    Chọn câu sai

    Trong không gian Oxyz cho hai vectơ\vec a = \left( {{a_1},{a_2},{a_3}} ight),\,\,\,\vec b = \left( {{b_1},{b_2},{b_3}} ight)  khác \vec 0cùng phương. Câu nào sau đây sai? (có thể chọn 2 đáp án)

    Hướng dẫn:

     Ta xét đáp án \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}}:  sai vì thiếu điều kiện {b_1},{b_2},{b_3} e 0.

    Xét đáp án \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.: luôn đúng vì 2 vecto cùng phương với nhau.

    Ta xét tiếp: \left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_3} = k{b_3}\end{array} ight.,\,\,\,k \in \mathbb{R}: cũng sai, vì thiếu điều kiện k \in \mathbb{R} \backslash \left\{ 0 ight\}. 

    Như vậy ta sẽ chọn 2 đáp án có 2 ý  sai.

  • Câu 19: Thông hiểu
    Chọn mênh đề đúng

    Cho ba điểm A\left( {10,9,12} ight);\,\,B\left( { - 20,3,4} ight);\,\,\,C\left( { - 50, - 3, - 4} ight). Cho 3 mệnh đề sau:

    MĐ 1:  A, B, C thẳng hàng

    MĐ 2: AB song song với (xOy)

    MĐ 3: AB cắt (xOy)

    Mệnh đề đúng là?

    Hướng dẫn:

    Ta có: \overrightarrow {AB}  = \left( { - 30, - 6, - 8} ight);\,\,\overrightarrow {AC}  = \left( { - 60, - 12, - 16} ight) \Rightarrow \overrightarrow {AC}  = 2\overrightarrow {AB}

    \Rightarrow A,B,C thẳng hàng 

    Vậy MĐ 1 Đúng!

    Giả sử AB và (xOy) có điểm chung M\left( {x,y,0} ight) \Rightarrow \overrightarrow {AM}\overrightarrow {AB} cùng phương

    \Rightarrow \frac{{x - 10}}{{ - 30}} = \frac{{y - 9}}{{ - 6}} = \frac{{ - 12}}{{ - 8}} = \frac{3}{2} \Rightarrow M\left( {x =  - 35,y = 0,z = 0} ight)

    Vậy MĐ 2 sai, MĐ 3 đúng!

  • Câu 20: Vận dụng
    Hình hộp chữ nhật OABC.DEFG

    Cho hình hộp chữ nhật OABC.DEFG có OA = a;\,\,OC = b;\,\,CD = c. Gọi L là tâm hình hộp. Biểu thị vectơ \overrightarrow {OL} theo ba vectơ \overrightarrow {OA} ,\,\,\overrightarrow {OC} và  \overrightarrow {OD}?

    Hướng dẫn:

    Hinh-hop-chu-nhat-OABC-DEFG

    Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra

    \Rightarrow \overrightarrow {OL}  = \frac{1}{2}\overrightarrow {OF}  = \frac{1}{2}\left( {\overrightarrow {OB}  + \overrightarrow {BF} } ight) = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OC}  + \overrightarrow {OD} } ight)

            \Rightarrow \overrightarrow {OL}  = \left( {\frac{a}{2};\frac{b}{2};\frac{c}{2}} ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (30%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 6 lượt xem
Sắp xếp theo