Luyện tập Mặt cầu (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm tập hợp các tâm

    Tìm tập hợp các tâm I của mặt cầu sau nằm trên?

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {1 - m} ight)x + 2\left( {3 - 2m} ight)y + 2\left( {m - 2} ight)z + 5{m^2} - 9m + 6 = 0

    Hướng dẫn:

    Theo đề bài, ta xác định các hệ số của (S)

    a = m - 1;\,\,b = 2m - 3;\,\,c = 2 - m;\,\,d = 5{m^2} - 9m + 6

    Suy ra ta gọi được tâm I của mặt cầu có tọa độ là I\left( {x = m - 1;y = 2m - 3;z = 2 - m} ight)

    \Rightarrow x + 1 = \frac{{y + 3}}{2} = 2 - z

    Xét (S) là mặt cầu \Leftrightarrow {\left( {m - 1} ight)^2} + {\left( {2m - 3} ight)^2} + {\left( {2 - m} ight)^2} - 5{m^2} + 9m - 6 > 0

    \begin{array}{l} \Leftrightarrow {m^2} - 9m + 8 > 0 \Leftrightarrow m < 1 \vee m > 8\\ \Leftrightarrow m - 1 < 0 \vee m - 1 > 7 \Leftrightarrow x < 0 \vee x > 7\end{array}

    Vậy tập hợp các điểm I là phân đường thẳng  x + 1 = \frac{{y + 3}}{2} = 2 - z

    tương ứng với x < 0\,\,\, \vee \,\,\,x > 7.

  • Câu 2: Vận dụng
    Tính diện tích mặt cầu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

    Hướng dẫn:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 3: Nhận biết
    Diện tích của đường tròn giao tuyến

    Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng 60^0. Diện tích của đường tròn giao tuyến bằng:

    Hướng dẫn:

    Diện tích của đường tròn giao tuyến

    Gọi H là hình chiếu vuông góc của (O) trên (P) thì

    ● H là tâm của đường tròn giao tuyến của (P) và (S).

    \widehat {OA,\left( P ight)} = \widehat {\left( {OA,AH} ight)} = {60^0}

    Bán kính của đường tròn giao tuyến: r = HA = OA.\cos {60^0} = \frac{R}{2}.

    Suy ra diện tích đường tròn giao tuyến: \pi {r^2} = \pi {\left( {\frac{R}{2}} ight)^2} = \frac{{\pi {R^2}}}{4}.

  • Câu 4: Vận dụng cao
    Tính tổng diện tích

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): (x-1)^2+(y+1)^2+(z-2)^2=16 và điểm A(1;2;3) . Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

    Gợi ý:

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2 (1) .

    Ta sẽ chứng minh (1) và áp dụng vào giải bài toán.

    Hướng dẫn:

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2(1) .

    Thật vậy , ta chọn hệ trục tọa độ Oxyz với O\equiv A , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R)..

    Khi đó tọa độ I(a;b;c) thì:

    IA^2=a^2+b^2+c^2=d^2(A;(Iyz))+d^2(A;(Ixz))+d^2(A;(Ixy))

    hay IA^2=II_1^2+II_2^2+II_3^2.

    Vậy (1) được chứng minh.

    Tính tổng diện tích

    Áp dụng giải bài:

    Mặt cầu (S) có tâm I(1;-1;2) và có bán kính r=4.

    \overrightarrow {IA}=(0;3;1) \Rightarrow IA= \sqrt {10}.

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R) và cắt mặt cầu (S) theo ba đường tròn lần lượt là(C_1),(C_2),(C_3).

    Gọi I_1, I_2, I_3 và  r_1, r_2, r_3 lần lượt là tâm và bán kính của (C_1),(C_2),(C_3).

    Khi đó : II_1\perp (P) \Rightarrow II_1^2+r_1^2=r^2 \Rightarrow r_1^2=r^2-II_1^2.

    Tương tự có: r_2^2=r^2-II_2^2  và  r_3^2=r^2-II_3^2.

    Theo nhận xét ở trên ta có: IA^2=II_1^2+II_2^2+II_3^2

    Ta có tổng diện tích các đường tròn là :

    S= \pi(r_1^2+r_2^2+r_3^2)=\pi(r^2-II_1^2+r^2-II_2^2+r^2-II_3^2)

    =\pi[3r^2-(II_1^2+II_2^2+II_3^2)]

    =\pi(3r^2-IA^2)=38 \pi.

  • Câu 5: Vận dụng
    Tìm bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 6: Thông hiểu
    Vị trí tương đối của 2 mặt cầu

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

    Đáp án là:

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

     Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):

    \left( S ight):a = 2;\,\,b =  - 3;\,\,c = 5;\,\,d =  - 11 \Rightarrow Tâm I\left( {2, - 3,5} ight); bán kính R=7

    \left( {S'} ight) = a' = 1;\,\,b' =  - 1;\,c' = 3;\,\,d' =  - 5 \Rightarrow Tâm J\left( {1, - 1,3} ight); bán kính R'=4

    I{J^2} = {\left( {1 - 2} ight)^2} + {\left( { - 1 + 3} ight)^2} + {\left( {3 - 5} ight)^2} = 9 \Rightarrow IJ = 3 = R - R'

    (S) và (S') tiếp xúc trong.

  • Câu 7: Thông hiểu
    Tính tọa độ tâm H

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

    Hướng dẫn:

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 8: Vận dụng cao
    Bán kính mặt cầu ngoại tiếp tứ diện

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác vuông tại B, AC = a\sqrt 3, góc \widehat {ACB} bằng 30^0. Góc giữa đường thẳng AB' và mặt phẳng (ABC) bằng 60^0. Bán kính mặt cầu ngoại tiếp tứ diện A'ABC bằng:

    Hướng dẫn:

     Bán kính mặt cầu ngoại tiếp tứ diện

    Ta có {60^0} = \widehat {AB',\left( {ABC} ight)} = \widehat {AB',AB} = \widehat {B'AB}.

    Trong \Delta ABC, ta có

    AB = AC.\sin \widehat {ACB} = \frac{{a\sqrt 3 }}{2}.

    Trong \Delta B'BA, ta có

    BB' = AB.\tan \widehat {B'AB} = \frac{{3a}}{2}

    Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp \Delta ABC.

    Gọi I  là trung điểm A'C, suy ra  IN\parallel AA' \Rightarrow IN \bot \left( {ABC} ight).

    Do đó IN là trục của \Delta ABC , suy ra IA = IB = IC.  (1)

    Hơn nữa, tam giác A'AC vuông tại A có I là trung điểm A'C nên IA'=IC=IA . (2)

    Từ (1) và (2), ta có IA'=IA=IB=IC hay I là tâm của mặt cầu ngoại tiếp hình chóp A'.ABC với bán kính R = IA' = \frac{{A'C}}{2} = \frac{{\sqrt {AA{'^2} + A{C^2}} }}{2} = \frac{{a\sqrt {21} }}{4}.

  • Câu 9: Vận dụng cao
    Tính bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C và BC=a. Mặt phẳng (SAB) vuông góc với đáy, SA = SB = a, \widehat {ASB} = {120^0}. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tính bán kính mặt cầu

    Gọi M là trung điểm AB , suy ra SM \bot ABSM \bot \left( {ABC} ight).

    Do đó SM là trục của tam giác ABC.

    Trong mặt phẳng (SMB), kẻ đường trung trực d của đoạn SB cắt SM tại I . Khi đó I là tâm mặt cầu ngoại tiếp hình chóp S.ABC , bán kính R=SI

    Ta có AB = \sqrt {S{A^2} + S{B^2} - 2SA.SB.\cos \widehat {ASB}}  = a\sqrt 3 .

    Trong tam giác vuông SMB, ta có SM = SB.\cos \widehat {MSB} = a.\cos {60^0} = \frac{a}{2}.

    Ta có \Delta SMB \backsim\Delta SPI, suy ra

    \frac{{SM}}{{SB}} = \frac{{SP}}{{SI}} \Rightarrow R = SI = \frac{{SB.SP}}{{SM}} = a

  • Câu 10: Vận dụng cao
    Tính T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c>0. Biết rằng mặt phẳng (ABC) đi qua điểm M(\frac 1 7; \frac 2 7 ; \frac 3 7) và tiếp xúc với mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}. Tính T=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}.

    Hướng dẫn:

    Mặt phẳng (ABC) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) nên có phương trình là:

    \frac{x}{a} +\frac{y}{b}+\frac{z}{c}=1

    Ta có M(\frac 1 7; \frac 2 7 ; \frac 3 7) \in (ABC) nên \frac{1}{a} +\frac{2}{b}+\frac{3}{c}=7.

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R=\sqrt \frac{72}{7}.

    (ABC) tiếp xúc với  (S)

    \Leftrightarrow d(I, (ABC))=R\Leftrightarrow \dfrac { | \dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}-1 |}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}=\sqrt{\frac{72}{7} }

    \Leftrightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}= \dfrac{7}{2}

  • Câu 11: Vận dụng cao
    Bán kính mặt cầu

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

    Hướng dẫn:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 12: Nhận biết
    Tìm đường kính

    Cho mặt cầu S\left( {O;R} ight) và mặt phẳng (\alpha). Biết khoảng cách từ O đến (\alpha) bằng \frac{R}{2}. Khi đó thiết diện tạo bởi mặt phẳng (\alpha) với S\left( {O;R} ight) là một đường tròn có đường kính bằng:

    Hướng dẫn:

     Tìm đường kính

    Gọi H là hình chiếu của O xuống (\alpha) .

    Ta có d\left[ {O,\left( \alpha  ight)} ight] = OH = \frac{R}{2} < R nên (\alpha) cắt S\left( {O;R} ight) theo đường tròn C\left( {H;r} ight).

    Bán kính đường tròn C\left( {H;r} ight)r = \sqrt {{R^2} - O{H^2}}  = \frac{{R\sqrt 3 }}{2}.

    Suy ra đường kính bằng R\sqrt 3.

  • Câu 13: Nhận biết
    Tìm bán kính của đường tròn

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

    Hướng dẫn:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

  • Câu 14: Thông hiểu
    Tìm m

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Hướng dẫn:

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 15: Thông hiểu
    Vị trí tương đối

    Cho mặt phẳng \left( P ight):2x - 4y + 4z + 5 = 0 và mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau

    Đáp án là:

    Cho mặt phẳng \left( P ight):2x - 4y + 4z + 5 = 0 và mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau

    Theo đề bài, ta xác định các hệ số của (S): 

    a = 1;b =  - 2;c =  - 1;d =  - 3 \Rightarrow R = 3.

    Suy ra tâm I có tọa độ là: I = \left( {1, - 2, - 1} ight)

    Áp dụng CT, ta có d\left( {I,P} ight) = \frac{{11}}{6} < R = 3 \Rightarrow (P) cắt (S)

  • Câu 16: Nhận biết
    Tính khoảng cách

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

    Hướng dẫn:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

  • Câu 17: Nhận biết
    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Hướng dẫn:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 18: Vận dụng
    Thể tích của khối cầu ngoại tiếp

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Hướng dẫn:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 19: Vận dụng
    Tính tỉ số

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{{a\sqrt {21} }}{6}. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số \frac{R}{h} bằng:

    Hướng dẫn:

     Tính tỉ số

    Gọi O là tâm \triangle ABC, suy ra SO \bot \left( {ABC} ight)AO = \frac{{a\sqrt 3 }}{3}

    Trong SOA, ta có h = SO = \sqrt {S{A^2} - A{O^2}}  = \frac{a}{2}

    Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:

    • I \in d nên IS =IA.
    • I \in SO nên IA=IB=IC.

    Do đó IA=IB=IC=IS nên I là tâm mặt cầu ngoại tiếp khối chóp .

    Gọi M là tung điểm SA, ta có \Delta SMI\,\, \backsim \,\,\Delta SOA nên R = SI = \frac{{SM.SA}}{{SO}} = \frac{{S{A^2}}}{{2SO}} = \frac{{7{m{a}}}}{{12}}

    Vậy \frac{R}{h} = \frac{7}{6}.

  • Câu 20: Vận dụng cao
    Tính tổng

    Trong không gian cho ba điểm A(3;0;0), B(1;2;1)C(2;-1;2). Biết mặt

    phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10;a;b). Tổng a+b là?

    Gợi ý:

    Áp dụng phương pháp tìm tọa độ tâm của mặt cầu nội tiếp tứ diện.

    Hướng dẫn:

     Phương trình (OAB) là: -y+2z=0.

    Phương trình (OAC) là:2y+z=0.

    Phương trình (OBC) là: x-z=0.

    Phương trình (ABC) là: 5x+3y+4z-15=0 .

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện OABC.

    Do đó:

    I nằm cùng phía với A đối với (OBC) suy ra: (a'-c')>0.

    I nằm cùng phía với B đối với (OAC) suy ra: (2b'+c')>0.

    I nằm cùng phía với C đối với (OAB) suy ra: (-b'+2c')>0.

    I nằm cùng phía với O đối với (ABC) suy ra: (5a'+3b'+4c'-15)<0.

    Suy ra:

    \left\{\begin{matrix} d(I,(OAB))=d(I,(OAC)) \\ d(I,(OAB))=d(I,(OBC)) \\ d(I,(OAB))=d(I,(ABC)) \end{matrix}ight.\Leftrightarrow \left\{\begin{matrix} \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|2b'+c'|}{\sqrt 5} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|a'-c'|}{\sqrt 2} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|5a'+3b'+4c'-15|}{5\sqrt 2} \end{matrix}ight.

     

    \Leftrightarrow \left\{\begin{matrix} |-b'+2c'|= |2b'+c'| \\ \sqrt 2{|-b'+2c'|}= \sqrt 5|a'-c'|\\ \sqrt 10{|-b'+2c'|}= |5a'+3b'+4c'-15| \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} -b'+2c'= 2b'+c' \\ \sqrt 2{(-b'+2c')}= \sqrt 5(a'-c')\\ \sqrt 10{(-b'+2c')}= -(5a'+3b'+4c'-15)\end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} a'=\dfrac{3}{ 2} \\ -b'=\dfrac{3 \sqrt 10 -9}{2} \\ c'=\dfrac{9 \sqrt 10 -27}{ 2} \end{matrix}ight.

    Suy ra:  I (\frac {3}{2} ;\frac {3\sqrt{10} -9}{2}; \frac {9\sqrt{10} -27}{2}), \Rightarrow \overrightarrow {BI}= (\frac {1}{2} ;\frac {3\sqrt{10} -13}{2}; \frac {9\sqrt{10} -29}{2}) ; \,\, \overrightarrow {BC}= (1;-3;1)

    \Rightarrow [\overrightarrow {BI}, \overrightarrow {BC}]= (-50+15 \sqrt{10} ; \frac {9\sqrt{10} -30}{2}; \frac {-3\sqrt{10} +10}{2})

    cùng phương với \vec n =(10;3;-1).

    Suy ra (BCI) có một VTPT là \vec n =(10;3;-1) =(10; a; b).

    Vậy: a+b=2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo