Đề Ôn tập chương 3 (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 30 câu
  • Điểm số bài kiểm tra: 30 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm họ nguyên hàm của hàm số f(x) = 3x^2 + 1

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

    Gợi ý:

     Học sinh sử dụng công thức sau:

    \int {\left[ {f\left( x ight) + g\left( x ight)} ight]dx}  = \int {f\left( x ight)dx}  + \int {g\left( x ight)dx}

    Hướng dẫn:

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 2: Thông hiểu
    Tính diện tích S của hình phẳng

    Tính diện tích S của hình phẳng giới hạn bới đồ thị của hàm số y = {e^x} + x và các đường thẳng x - y + 1 = 0;x = \ln 5 là:

    Hướng dẫn:

     Ta có: x - y + 1 = 0 \Rightarrow y = x + 1

    Phương trình hoành độ giao điểm của hai đồ thị là

    {e^x} + x = x + 1 \Leftrightarrow {e^x} = 1 \Rightarrow x = 0

    Diện tích hình phẳng cần tìm là:

    \begin{matrix}  S = \int\limits_0^{\ln 5} {\left| {{e^x} - 1} ight|dx}  = \int\limits_0^{\ln 5} {\left( {{e^x} - 1} ight)dx}  \hfill \\   = \left. {\left( {{e^x} - x} ight)} ight|_0^{\ln 5} = 4 - \ln 5 \hfill \\ \end{matrix}

  • Câu 3: Vận dụng
    Tính tích phân I

    Tích phân I = \int\limits_{ - 1}^{\frac{1}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx} có giá trị là:

    Hướng dẫn:

    Ta có: \left( {5 + 4x - {x^2}} ight)' = 4 - 2x và  4x - 3 = 5 - 2\left( {4 - 2x} ight)

    I = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  - \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {9 - {{\left( {x - 2} ight)}^2}} }}dx}

    Đặt x - 2 = 3\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 3\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{7}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = \frac{1}{2} \Rightarrow t =  - \frac{\pi }{6} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{5.3\cos t}}{{\sqrt {9 - 9{{\sin }^2}t} }}dt}  = \frac{{5\pi }}{3}

    Xét {I_2} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Đặt t = 5 + 4x - {x^2} \Rightarrow dt = 4 - 2x

    Đổi cận \left\{ \begin{gathered}  x = \frac{1}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\  x = \frac{7}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\ \end{gathered}  ight. \Rightarrow {I_2} = 0

    \Rightarrow I = \frac{{5\pi }}{3}

  • Câu 4: Vận dụng cao
    Tính số tiền tối thiểu để trồng kín hoa trong vườn

    Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

    Tính số tiền tối thiểu để trồng kín hoa trong vườn

    Hướng dẫn:

    Nửa đường tròn (T) có phương trình y = \sqrt {2 - {x^2}}

    Xét parabol (P) có trục đối xứng Oy nên có phương trình dạng y = a{x^2} + c

    (P) cắt Oy tại điểm \left( {0; - 1} ight) => c =  - 1

    (P) cắt (T) tại điểm \left( {1;1} ight) thuộc (T) => a + c = 1 \Rightarrow a = 2

    Phương trình (P) là: y = 2{x^2} - 1

    Diện tích miền phẳng D (phần tô màu trong hình là:

    \begin{matrix}  S = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}}  - 2{x^2} + 1} ight)dx}  \hfill \\   = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  + \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx}  = {I_1} + {I_2} \hfill \\ \end{matrix}

    \Rightarrow {I_1} = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  = \left. {\left( { - \frac{2}{3}{x^3} + x} ight)} ight|_{ - 1}^1 = \frac{2}{3}

    Xét {I_2} = \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx} đặt x = \sqrt 2 \sin t;t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight]

    => dx = \sqrt 2 \cos tdt

    Ta có: x \in \left[ {1;1} ight] \Rightarrow t \in \left[ { - \frac{\pi }{4};\frac{\pi }{4}} ight]

    Khi đó ta có:

    \begin{matrix}  {I_2} = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\sqrt {2 - 2{{\sin }^2}t} .\sqrt 2 \cos tdt}  \hfill \\   = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {{{\cos }^2}tdt}  = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left( {1 + \cos 2t} ight)dt}  \hfill \\   = \left. {\left( {t + \frac{1}{2}\sin 2t} ight)} ight|_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} = 1 + \dfrac{\pi }{2} \hfill \\   \Rightarrow S = {I_1} + {I_2} = \dfrac{5}{3} + \dfrac{\pi }{2}\left( {{m^2}} ight) \hfill \\ \end{matrix}

    Số tiền trồng hoa tối thiểu là: 300000.\left( {\frac{5}{3} + \frac{\pi }{2}} ight) \approx 971239 đồng

  • Câu 5: Nhận biết
    Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3

    Một chất điểm dạng chuyển động với vận tốc {v_0} = 15\left( {m/s} ight) thì tăng tốc với gia tốc a\left( t ight) = {t^2} + 5t\left( {m/s} ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Hướng dẫn:

     Ta có: v\left( t ight) = \int {a\left( t ight)dt = \int {\left( {{t^2} + 5t} ight)} dt = \frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + C\left( {m/s} ight)}

    Do khi bắt đầu tăng tốc {v_0} = 15\left( {m/s} ight) nên

    {v_{\left( {t = 0} ight)}} = 15 \Rightarrow C = 18 \Rightarrow v\left( t ight) = v\left( t ight) = \frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + 15\left( {m/s} ight)

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô tăng tốc bằng:

    S = \int\limits_0^3 {v\left( t ight)dt}  = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + \frac{5}{2}{t^2} + 15} ight)dt}  = \frac{{297}}{4}\left( m ight)

  • Câu 6: Vận dụng cao
    Số điểm cực trị của hàm số

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

    Hướng dẫn:

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 7: Thông hiểu
    Thực hiện tính tích phân chứa tham số

    Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

    I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx}  = a\int\limits_0^1 {\frac{x}{{x + 1}}dx - 2a\int\limits_0^1 {xdx} }

    = a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 - a\left. {\left( {{x^2}} ight)} ight|_0^1 = a\left( {1 - \ln 2} ight) - a =  - a\ln 2

  • Câu 8: Vận dụng cao
    Kết luận nào sau đây là đúng?

    Cho hàm số y = f\left( x ight) có đạo hàm liên tục trên đoạn \left[ { - 3;3} ight] và đồ thị hàm số y = f'\left( x ight) (như hình vẽ). biết f\left( 1 ight) = 6g\left( x ight) = f\left( x ight) - \frac{{{{\left( {x + 1} ight)}^2}}}{2}. Kết luận nào sau đây là đúng?

    Kết luận nào sau đây là đúng

    Hướng dẫn:

    Hình vẽ minh họa:

    Kết luận nào sau đây là đúng

    Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( x ight) - \left( {x + 1} ight) \hfill \\  g'\left( x ight) = 0 \Rightarrow f'\left( x ight) = x + 1 \hfill \\ \end{matrix}

    Từ đồ thị ta thấy g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {x = 1} \\   {x = 3} \end{array}} ight.

    Từ đồ thị ta thấy

    \begin{matrix}  \int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{ABCD}}}  \hfill \\   \Leftrightarrow f\left( 1 ight) - f\left( { - 3} ight) > 6 \hfill \\   \Leftrightarrow f\left( { - 3} ight) < 0 \hfill \\ \end{matrix}

    => g\left( { - 3} ight) = f\left( { - 3} ight) - 2 < 0

    Mặt khác

    \begin{matrix}\int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{OEFG}}}  \hfill \\   \Leftrightarrow f\left( 3 ight) - f\left( 1 ight) > 2 \hfill \\   \Leftrightarrow f\left( 3 ight) > 8 \Rightarrow G\left( 3 ight) > 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Kết luận nào sau đây là đúng

    => g\left( x ight) = 0 có duy nhất nghiệm trên \left[ { - 3;3} ight]

  • Câu 9: Thông hiểu
    Thể tích V của khối tròn xoay

    Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bời các đường thẳng y = 0;y = x\sqrt {\ln \left( {x + 1} ight)} ;x = 1 xung quanh trục Ox là:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của (C)Oxx\sqrt {\ln \left( {x + 1} ight)}  = 0 \Rightarrow x = 0

    Thể tích khối tròn xoay cần tính là V = \pi \int\limits_0^1 {{x^2}\ln \left( {x + 1} ight)dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = \ln \left( {1 + x} ight)} \\   {dv = {x^2}dx} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {du = \dfrac{{dx}}{{x + 1}}} \\   {v = \dfrac{{{x^3} + 1}}{3}} \end{array}} ight.

    Ta có:

    \begin{matrix}  V = \pi \int\limits_0^1 {{x^2}\ln \left( {x + 1} ight)dx}  \hfill \\   = \pi \left\{ {\left. {\dfrac{{{x^3} + 1}}{3}\ln \left( {x + 1} ight)} ight|_0^1 - \int\limits_0^1 {\left( {{x^2} - x + 1} ight)dx} } ight\} \hfill \\   = \dfrac{{\pi \left( {12\ln 2 - 5} ight)}}{{18}} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết
    Tính tích phân I

    Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\dfrac{{x + 1}}{{{x^2}}}dx}  \hfill \\   = \int\limits_e^{{e^2}} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} ight)dx}  \hfill \\   = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x}} ight)} ight|_e^{{e^2}} \hfill \\   = 1 + \dfrac{1}{e} - \dfrac{1}{{{e^2}}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight) = \frac{{ - x - 2}}{{x - 1}}, trục hoành và các đường thẳng x =  - 1;x = 0

    Hướng dẫn:

     Gọi S là diện tích của hình phẳng trên ta có: S = \int\limits_{ - 1}^0 {\left| {\frac{{ - x - 2}}{{x - 1}}} ight|dx}

    Ta có: \frac{{ - x - 2}}{{x - 1}} \geqslant 0;\forall x \in \left[ { - 1;0} ight]

    Khi đó:

    \begin{matrix}  S = \int\limits_{ - 1}^0 {\left| {\dfrac{{ - x - 2}}{{x - 1}}} ight|dx}  = \int\limits_{ - 1}^0 {\left( {\dfrac{{ - x - 2}}{{x - 1}}} ight)dx}  \hfill \\   = \int\limits_{ - 1}^0 {\dfrac{{ - \left( {x - 1} ight) - 3}}{{x - 1}}dx}  = \int\limits_{ - 1}^0 {\left( { - 1 - \dfrac{3}{{x - 1}}} ight)dx}  \hfill \\   = \left. {\left( { - x - 3\ln \left| {x - 1} ight|} ight)} ight|_{ - 1}^0 = 3\ln 2 - 1 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết
    Tìm nguyên hàm của hàm số f(x) = cos3x

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

    Gợi ý:

     Công thức áp dụng giải bài toán:

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 13: Thông hiểu
    Biết F(x) = x2 + 4x + 1 là một nguyên hàm của hàm số y = f(x)

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

    Gợi ý:

     f\left( x ight) = \left[ {F\left( x ight)} ight]'

    Hướng dẫn:

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 14: Nhận biết
    Tìm giá trị của tích phân I

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    Gợi ý:

     Áp dụng công thức tích phân của hàm sin (x).

    Hướng dẫn:

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  = \left. {\left( { - \cos x} ight)} ight|_0^{\dfrac{\pi }{2}} = 1

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 15: Vận dụng cao
    Tính thể tích của mô hình

    Để hoàn thành bài tập làm mô hình của lớp, bạn Minh làm một mô hình có dáng khối tròn xoay. Mặt cắt qua trục của mô hình (như hình vẽ), đường cong AB là một phần của parabol có đỉnh là điểm A, .OO' = 5cm;OA = 10cm;OB = 20cm Tính thể tích của mô hình.

    Tính thể tích của mô hình

    Hướng dẫn:

    Kí hiệu hình vẽ:

    Tính thể tích của mô hình

    Ta gọi thể tích của chiếc mũ là V

    Thể tích của khối trụ có bán kính đáy bằng OA = 10cm và đường cao là OO' = 5cm là V1

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong AB và hai trục tọa độ quanh trục Oy là V2.

    Ta có: V = {V_1} + {V_2}

    {V_1} = {5.10^2}\pi  = 500\pi \left( {c{m^3}} ight)

    Chọn hệ trục tọa độ như hình vẽ

    Do parabol có đỉnh A nên nó có phương trình dạng \left( P ight):y = a{\left( {x - 10} ight)^2}

    (P) qua điểm B\left( {0;20} ight) nên a = \frac{1}{5}

    => \left( P ight):y = \frac{1}{5}{\left( {x - 10} ight)^2} \Rightarrow x = 10 - \sqrt {5y} (vì x < 10

    =>{V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } ight)}^2}dy}

    = \pi \left( {3000 - \frac{{8000}}{3}} ight) = \frac{{1000\pi }}{3}

    => V = {V_1} + {V_2} = \frac{{1000\pi }}{3} + 500\pi

    = \frac{{2500\pi }}{3}\left( {c{m^3}} ight)

  • Câu 16: Vận dụng
    Tìm tập nghiệm S của phương trình

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    Hướng dẫn:

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao
    Chọn kết luận đúng

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 18: Nhận biết
    Tính thể tích V

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 19: Nhận biết
    Thực hiện tính tích phân I 

    Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx}  = \left. {\left( { - \frac{1}{x} + {x^2}} ight)} ight|_1^2 = \frac{7}{2}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 20: Vận dụng cao
    Chọn mệnh đề đúng trong các mệnh đề sau

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 21: Vận dụng
    Tìm vận tốc của chất điểm B

    Một chất điểm A từ trạng thái nghỉ chuyển động với vận tốc nhanh dần đều, 8 giây sau nó đạt đến vận tốc 6m/s. Từ thời điểm đó nó chuyển động đều. Một chất điểm B khác xuất phát từ cùng vị trí A nhưng chậm hơn nó 12 giây với vận tốc nhanh dần đều và đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc B tại thời điểm đó.

    Hướng dẫn:

    Phương trình vận tốc của vật A là {v_1} = a.t

    Ta có: v\left( 8 ight) = 6 \Rightarrow a = \frac{3}{4} \Rightarrow {v_1} = \frac{3}{4}t

    Quãng đường vật A đi được sau 20s đầu là: \int\limits_0^8 {\frac{3}{4}tdt + 6.12 = 96\left( m ight)}

    Phương trình vận tốc của vật B là

    \begin{matrix}  {v_2} = bt \Rightarrow {S_B} = \int\limits_0^8 {btdt}  = 96 \Rightarrow b = 3 \hfill \\   \Rightarrow {v_2} = bt \hfill \\ \end{matrix}

    => Vận tốc của vật B khi hai vật gặp nhau là: {v_B} = 3.8 = 24\left( {m/s} ight)

  • Câu 22: Vận dụng
    Tính giá trị tích phân I

    Tích phân I = \int\limits_0^1 {\frac{{3 + 4x}}{{\sqrt {3 + 2x - {x^2}} }}dx} có giá trị là:

    Hướng dẫn:

     Ta có: \left( {3 + 3x - {x^2}} ight)' = 3 - 2x3 + 4x = 9 - 2\left( {3 - 2x} ight)

    \Rightarrow I = \int\limits_0^1 {\frac{{3 + 4x}}{{\sqrt {3 + 2x - {x^2}} }}dx}  = \int\limits_0^1 {\frac{{7 - 2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    = \int\limits_0^1 {\frac{7}{{\sqrt {3 + 2x - {x^2}} }}dx}  - \int\limits_0^1 {\frac{{2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_0^1 {\frac{7}{{\sqrt {3 + 2x - {x^2}} }}dx}  = \int\limits_0^1 {\frac{7}{{\sqrt {4 - {{\left( {x - 1} ight)}^2}} }}dx}

    Đặt x - 1 = 2\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = 0 \Rightarrow t =  - \frac{\pi }{6} \hfill \\  x = 1 \Rightarrow t = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^0 {\frac{{14\cos t}}{{\sqrt {4 - 4{{\sin }^2}t} }}dt}  = \frac{{7\pi }}{6}

    Xét  {I_2} = \int\limits_0^1 {\frac{{2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    Đặt t = 3 + 2x - {x^2} \Rightarrow dt = \left( {2 - 2x} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = 0 \Rightarrow t = 3 \hfill \\  x = 1 \Rightarrow t = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_2} = \int\limits_3^4 {\frac{2}{{\sqrt t }}dt}  = 4\left. {\left( {{t^{\frac{1}{2}}}} ight)} ight|_3^4 = 4\left( {2 - \sqrt 3 } ight)

    I = {I_1} - {I_2} = \frac{{7\pi }}{6} + 4\sqrt 3  - 8

  • Câu 23: Vận dụng
    Tìm giá trị a thỏa mãn điều kiện

    Tích phân I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = \ln 2. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = 2a\int\limits_0^1 {\left( {1 - \frac{1}{{x + 1}}} ight)dx}  = 2a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 = 2a\left( {1 - \ln 2} ight)

    I = \ln 2 \Leftrightarrow 2a\left( {1 - \ln 2} ight) = \ln 2 \Leftrightarrow a = \frac{{\ln 2}}{{2 - 2\ln 2}}

  • Câu 24: Thông hiểu
    Gọi F(x) là một nguyên hàm của hàm số f(x) = cos5x.cosx

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

    Gợi ý:

     \cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} ight) + \cos \left( {a - b} ight)} ight]

    \int {\cos udu = \sin u + C}

    Hướng dẫn:

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu
    Tính tích phân theo tham số a

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}, với a e 0 có giá trị là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}  \hfill \\ = \left. {\left( { - \dfrac{1}{a}\cos ax + \dfrac{1}{a}\sin ax} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\ \end{matrix}

    \begin{matrix}= \left. {\left( {\dfrac{{\sqrt 2 }}{a}\sin \left( {ax - \dfrac{\pi }{4}} ight)} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\= \dfrac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\dfrac{\pi }{2} - \dfrac{\pi }{4}} ight) + \sin \left( {a\dfrac{\pi }{2} + \dfrac{\pi }{4}} ight)} ight] \hfill \\ \end{matrix}

     

  • Câu 26: Vận dụng cao
    Phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 27: Thông hiểu
    Cho giá trị của tích phân

    Cho giá trị của tích phân {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = a, {I_2} = \int\limits_e^{2e} {\left( {\frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{x + 1}}} ight)dx}  = b. Giá trị a.b gần nhất với giá trị nào sau đây?

    Gợi ý:

     Áp dụng công thức nguyên hàm của hàm số lượng giác sin (x) và cos (x) và công thức nguyên hàm của phân thức. 

    Hướng dẫn:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = \left. {\left( { - \frac{1}{3}\cos 3x + \frac{1}{3}\sin 3x} ight)} ight|_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} =  - \frac{2}{3} \Rightarrow a =  - \frac{2}{3}

    \begin{matrix}  {I_2} = \int\limits_e^{2e} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{1}{{x + 1}}} ight)dx}  = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x} - \ln \left| {x + 1} ight|} ight)} ight|_e^{2e} \hfill \\ = \ln 2 - \dfrac{1}{{2e}} + \dfrac{1}{e} - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\   \Rightarrow b =  - \dfrac{1}{{2e}} + \dfrac{1}{e} + \ln 2 - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\ \end{matrix}

    \Rightarrow a.b \approx  - 0,2198

  • Câu 28: Vận dụng cao
    Tìm điều kiện của a và b

    Trong hệ trục tọa độ Oxy, cho parabol \left( P ight):y = {x^2} và hai đường thẳng y = a;y = b;\left( {0 < a < b} ight) (mô tả như hình vẽ). Gọi {S_1} là diện tích hình phẳng giới hạn bới và đường thẳng y=a (phần tô màu đen); S_2 là diện tích hình phẳng giới hạn bới parabol \left( P ight) và đường thẳng y=b (phần gạch chéo). Với điều kiện nào sau đây của a,b thì {S_1} = 2{S_2}?

    Tìm điều kiện của a và b

    Hướng dẫn:

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=b là:

    {x^2} = b \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt b } \\   {x =  - \sqrt b } \end{array}} ight.

    Phương trình hoành độ giao điểm của \left( P ight) và đường thẳng y=a là:

    {x^2} = a \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \sqrt a } \\   {x =  - \sqrt a } \end{array}} ight.

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=b là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt b } {{{\left( {b - x} ight)}^2}dx}  = \left. {2\left( {bx - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt b } \hfill \\   = 2\left( {b\sqrt b  - \dfrac{{b\sqrt b }}{3}} ight) = \dfrac{{4b\sqrt b }}{3} \hfill \\ \end{matrix}

    Diện tích hình phẳng giới hạn bởi \left( P ight)y=a là:

    \begin{matrix}  S = 2\int\limits_0^{\sqrt a } {{{\left( {a - x} ight)}^2}dx}  = \left. {2\left( {ax - \dfrac{{{x^3}}}{3}} ight)} ight|_0^{\sqrt a } \hfill \\   = 2\left( {a\sqrt a  - \dfrac{{a\sqrt a }}{3}} ight) = \dfrac{{4a\sqrt a }}{3} \hfill \\ \end{matrix}

    Khi đó: {S_1} = 2{S_2} \Leftrightarrow \frac{{4b\sqrt b }}{3} = 2\frac{{4a\sqrt a }}{3} \Rightarrow b = \sqrt[3]{4}a

     

  • Câu 29: Vận dụng cao
    Tính khoảng cách giữa hai quả bóng

    Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc {v_A}\left( t ight) = 8 - 2t\left( {m/s} ight) và quả bóng B nảy ngược lại với vận tốc {v_b}\left( t ight) = 12 - 4t\left( {m/s} ight).

    Gợi ý:

     Tính thời gian từng quả bóng chuyển động đến khi dừng hẳn

    => Quãng đường từng quả di chuyển được.

    Hướng dẫn:

    Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_A}\left( t ight) = 0 \Rightarrow 8 - 2t = 0 \Rightarrow t = 4\left( s ight)

    Quãng đường quả bóng A di chuyển được là: 

    {S_A} = \int\limits_0^4 {\left( {8 - 2t} ight)dt}  = 16\left( m ight)

    Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_B}\left( t ight) = 0 \Rightarrow 12 - 4t = 0 \Rightarrow t = 3\left( s ight)

    Quãng đường quả bóng B di chuyển được là:

    {S_B} = \int\limits_0^3 {\left( {12 - 4t} ight)dt}  = 18\left( m ight)

    Vậy khoảng cách hai quả bóng sau khi dừng hẳn là 

    S = {S_A} + {S_B} = 16 + 18 = 34\left( m ight)

  • Câu 30: Vận dụng
    Xác định hàm số f(x)

    Xác định hàm số f(x) biết rằng f'\left( x ight) = x\sqrt {1 + {x^2}} ;3f\left( 0 ight) = 4

    Gợi ý:

     f\left( x ight) = \int {f'\left( x ight)dx}

    Hướng dẫn:

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  \hfill \\   \Rightarrow f\left( x ight) = \int {x\sqrt {{x^2} + 1} dx}  = \dfrac{1}{2}\int {{{\left( {{x^2} + 1} ight)}^{\frac{1}{2}}}d\left( {{x^2} + 1} ight) = \dfrac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + C}  \hfill \\ \end{matrix}

    3f\left( 0 ight) = 4 \Rightarrow 3\left[ {\frac{{{{\left( {\sqrt {{0^2} + 1} } ight)}^3}}}{3} + C} ight] = 4 \Rightarrow C = 1

    Vậy hàm số cần tìm là f\left( x ight) = \frac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (23%):
    2/3
  • Thông hiểu (27%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Sắp xếp theo