Luyện tập Tích phân (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Cho giá trị của tích phân

    Cho giá trị của tích phân {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = a, {I_2} = \int\limits_e^{2e} {\left( {\frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{x + 1}}} ight)dx}  = b. Giá trị a.b gần nhất với giá trị nào sau đây?

    Gợi ý:

     Áp dụng công thức nguyên hàm của hàm số lượng giác sin (x) và cos (x) và công thức nguyên hàm của phân thức. 

    Hướng dẫn:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = \left. {\left( { - \frac{1}{3}\cos 3x + \frac{1}{3}\sin 3x} ight)} ight|_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} =  - \frac{2}{3} \Rightarrow a =  - \frac{2}{3}

    \begin{matrix}  {I_2} = \int\limits_e^{2e} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{1}{{x + 1}}} ight)dx}  = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x} - \ln \left| {x + 1} ight|} ight)} ight|_e^{2e} \hfill \\ = \ln 2 - \dfrac{1}{{2e}} + \dfrac{1}{e} - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\   \Rightarrow b =  - \dfrac{1}{{2e}} + \dfrac{1}{e} + \ln 2 - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\ \end{matrix}

    \Rightarrow a.b \approx  - 0,2198

  • Câu 2: Thông hiểu
    Cho giá trị của tích phân

    Cho giá trị của tích phân {I_1} = \int\limits_{ - 1}^1 {\left( {{x^4} + 2{x^3}} ight)} dx = a, {I_2} = \int\limits_{ - 2}^{ - 1} {\left( {{x^2} + 3x} ight)} dx = b.

    Giá trị của \frac{a}{b} là:

    Gợi ý:

     Áp dụng công thức nguyên hàm của hàm số lũy thừa.

    Hướng dẫn:

     Ta có:

    {I_1} = \int\limits_{ - 1}^1 {\left( {{x^4} + 2{x^3}} ight)} dx = \left. {\left( {\frac{1}{5}{x^5} + \frac{1}{2}{x^4}} ight)} ight|_{ - 1}^1 = \frac{2}{5} \Rightarrow a = \frac{2}{5}

    {I_2} = \int\limits_{ - 2}^{ - 1} {\left( {{x^2} + 3x} ight)} dx = \left. {\left( {\frac{1}{3}{x^3} + \frac{3}{2}{x^2}} ight)} ight|_{ - 2}^{ - 1} =  - \frac{{13}}{6} \Rightarrow b =  - \frac{{13}}{6}

    \Rightarrow P = \frac{a}{b} =  - \frac{{12}}{{65}}

  • Câu 3: Nhận biết
    Tính tích phân I

    Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

    I = \int\limits_0^1 {\frac{1}{{x + 1}}dx}  = \left. {\left( {\ln \left| {x + 1} ight|} ight)} ight|_0^1 = \ln 2

    Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên

  • Câu 4: Thông hiểu
    Cho giá trị của tích phân

    Cho giá trị của tích phân {I_1} = \int\limits_1^2 {\frac{{{x^2} + 2x}}{{x + 1}}dx}  = a, {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = b}. Giá trị của biểu thức P = a - b là:

    Gợi ý:

     Áp dụng công thức tích phân của hàm phân thức.

    Hướng dẫn:

     Ta có:

    \begin{matrix}  {I_1} = \int\limits_1^2 {\dfrac{{{x^2} + 2x}}{{x + 1}}dx}  \hfill \\ = \int\limits_1^2 {\left( {x + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\ = \left. {\left( {\dfrac{{{x^2}}}{2} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \Rightarrow a = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = \left. {\left( {\ln \left| x ight|} ight)} ight|} _e^{{e^2}} = 1 \Rightarrow b = 1

    P = a - b = \frac{3}{2} + \ln 2 - \ln 3

  • Câu 5: Vận dụng cao
    Tính giá trị biểu thức 2a - 3b thỏa mãn đẳng thức

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết
    Giá trị của tích phân I

    Tích phân I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx} có giá trị là:

    I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx}  = \left. {\left( {\frac{1}{4}{x^4} + \frac{3}{2}{x^2} + 2x} ight)} ight|_{ - 1}^1 = 4

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 7: Thông hiểu
    Tính tích phân I

    Tích phân I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx có giá trị là:

    Hướng dẫn:

     \begin{matrix}  I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx \hfill \\   = \left. {\left( {\dfrac{1}{4}{x^4} + \dfrac{a}{2}{x^2} + 2x} ight)} ight|_{ - 1}^0 \hfill \\   = \dfrac{7}{4} - \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng cao
    Tìm số nghiệm nguyên âm của phương trình

    Số nghiệm nguyên âm của phương trình: {x^3} - ax + 2 = 0 với a = \int\limits_1^{3e} {\frac{1}{x}dx} là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  a = \int\limits_1^{3e} {\dfrac{1}{x}dx}  = \left. {\left( {\ln \left| x ight|} ight)} ight|_1^{3e} = 3 \hfill \\   \Rightarrow {x^3} - 3x + 2 = 0 \hfill \\   \Leftrightarrow {\left( {x - 1} ight)^2}\left( {x + 2} ight) = 0 \hfill \\   \Leftrightarrow x = 1 \vee x =  - 2 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng
    Tìm giá trị của a thỏa mãn điều kiện

    Tích phân I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = a\int\limits_1^2 {\frac{x}{{{x^2} + 3x + 2}}} dx + \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx

    Xét

    \begin{matrix}  {I_1} = a\int\limits_1^2 {\dfrac{x}{{{x^2} + 3x + 2}}} dx \hfill \\ = a\int\limits_1^2 {\left( {\dfrac{2}{{x + 2}} - \dfrac{1}{{x + 1}}} ight)} dx \hfill \\ = a\left. {\left( {2\ln \left| {x + 2} ight| - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = a\left( {2\ln 4 - 3\ln 3 + \ln 2} ight) \hfill \\ = 2a\ln \dfrac{4}{3} + a\ln \dfrac{2}{3} \hfill \\ \end{matrix}

    Xét {I_2} = \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx = \left. {\left( {\ln \left| {x + 1} ight| - \ln \left| {x + 2} ight|} ight)} ight|_1^2 =  - \ln \frac{4}{3} - \ln \frac{2}{3}

    \Rightarrow I = {I_1} + I{}_2 = \left( {2a - 1} ight)\ln \frac{4}{3} + \left( {a - 1} ight)\ln \frac{2}{3}

    Theo đề bài: I = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3} \Rightarrow a = \frac{4}{5}

  • Câu 10: Vận dụng
    Tích phân của biểu thức I có giá trị là?

    Tích phân I = \int\limits_{\frac{5}{2}}^3 {\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)} dx} có giá trị là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_{\frac{5}{2}}^3 {\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)} dx}  = \int\limits_{\frac{5}{2}}^3 {\sqrt { - 3 - {x^2} + 2x} dx}  = \int\limits_{\frac{5}{2}}^3 {\sqrt {1 - {{\left( {x - 2} ight)}^2}} dx}

    Đặt x - 2 = \sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = \cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{5}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = 3 \Rightarrow t = \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sqrt {1 - {{\sin }^2}t} .\cos tdt}  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {{{\cos }^2}tdt}

    = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{1 + \cos 2t}}{2}dt = \frac{1}{2}\left. {\left( {x + \frac{1}{2}\sin 2t} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}}}  = \frac{\pi }{6} - \frac{{\sqrt 3 }}{8}

  • Câu 11: Vận dụng
    Tính tích phân I

    Tích phân I = \int\limits_{ - 1}^{\frac{1}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx} có giá trị là:

    Hướng dẫn:

    Ta có: \left( {5 + 4x - {x^2}} ight)' = 4 - 2x và  4x - 3 = 5 - 2\left( {4 - 2x} ight)

    I = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  - \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {9 - {{\left( {x - 2} ight)}^2}} }}dx}

    Đặt x - 2 = 3\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 3\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{7}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = \frac{1}{2} \Rightarrow t =  - \frac{\pi }{6} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{5.3\cos t}}{{\sqrt {9 - 9{{\sin }^2}t} }}dt}  = \frac{{5\pi }}{3}

    Xét {I_2} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Đặt t = 5 + 4x - {x^2} \Rightarrow dt = 4 - 2x

    Đổi cận \left\{ \begin{gathered}  x = \frac{1}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\  x = \frac{7}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\ \end{gathered}  ight. \Rightarrow {I_2} = 0

    \Rightarrow I = \frac{{5\pi }}{3}

  • Câu 12: Vận dụng cao
    Tìm mệnh đề đúng trong các mệnh đề dưới đây

    Cho \int\limits_1^e {\left( {1 + x\ln x} ight)dx = a{e^2} + be + c} với a, b, c là các số hữu tỉ. Mệnh đề nào sau đây đúng.

    Hướng dẫn:

     Ta có 

    \int\limits_1^e {\left( {1 + x\ln x} ight)dx = a{e^2} + be + c = } \int\limits_1^e {1dx}  + \int\limits_1^e {x\ln xdx}  = e - 1 + \int\limits_1^e {x\ln xdx}

    Tính J = \int\limits_1^e {x\ln xdx}

    Đặt \left\{ \begin{gathered}  u = \ln x \hfill \\  dv = xdx \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  du = \frac{1}{x}dx \hfill \\  v = \frac{{{x^2}}}{2}dx \hfill \\ \end{gathered}  ight.

    Suy ra J = \left. {\frac{{{x^2}}}{2}\ln x} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx = \frac{{{e^2}}}{2} - \left. {\frac{{{x^2}}}{4}} ight|_1^e}  = \frac{{{e^2}}}{2} - \frac{{{e^2}}}{4} + \frac{1}{4} = \frac{{{e^2}}}{4} + \frac{1}{4}

    Vậy \int\limits_1^e {\left( {1 + x\ln x} ight)dx = } e - 1 + \int\limits_1^e {x\ln xdx}  = e - 1 + \frac{{{e^2}}}{4} + \frac{1}{4} = \frac{{{e^2}}}{4} + e - \frac{3}{4}

    Như vậy, ta được: a = \frac{1}{4};\,\,\,\,\,b = 1;\,\,\,\,\,c =  - \frac{3}{4}

    Suy ra ta có: \frac{1}{4} - 1 =  - \frac{3}{4} hay a - b = c

  • Câu 13: Vận dụng cao
    Tổng các số hữu tỉ a, b, c thỏa mãn điều kiện

    Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1, a b là các số hữu tỉ. Giá trị của a + b + c là:

    Hướng dẫn:

     Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1. Giá trị của a + b + c là:

    Ta có:

    {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = \int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \int\limits_0^1 {tdt}  = 1 , với t = \tan x

    {I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {\frac{1}{3}{x^3} + \frac{2}{3}{x^{\frac{1}{3}}}} ight)} ight|_0^1

    \Rightarrow a = 1,b = \frac{1}{3},c = \frac{2}{3} \Rightarrow a + b + c = 2

  • Câu 14: Vận dụng cao
    Tìm số hữu tỉ a thỏa mãn đẳng thức

    Biết I = \int\limits_0^1 {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {{{\ln }^2}x + \frac{1}{3}x} ight)}}{x}dx}  = \frac{2}{9}\left( {\sqrt {1 + ae + 27{e^2} + 27{e^3}}  - 3\sqrt 3 } ight), a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_1^e {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {{{\ln }^2}x + \frac{1}{3}x} ight)}}{x}dx}  = \frac{1}{3}\int\limits_1^e {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {3{{\ln }^2}x + x} ight)}}{x}dx}

    Đặt t = {\ln ^3}x + 3x \Rightarrow dt = \frac{3}{x}{\ln ^2}x + 1

    Đổi cận \left\{ \begin{gathered}  x = 1 \Rightarrow t = 3 \hfill \\  x = e \Rightarrow t = 1 + 3e \hfill \\ \end{gathered}  ight.

    \Rightarrow I = \int\limits_3^{1 + 3e} {\sqrt t } dt = \frac{2}{3}\left. {\left( {\sqrt {{t^3}} } ight)} ight|_3^{1 + 3e} = \frac{2}{3}\left( {\sqrt {{{\left( {1 + 3e} ight)}^3}}  - 3\sqrt 3 } ight)

    = \frac{2}{9}\left( {\sqrt {1 + 9e + 27{e^2} + 27{e^3}}  - 3\sqrt 3 } ight) \Rightarrow a = 9

  • Câu 15: Vận dụng
    Tính giá trị tích phân I

    Tích phân I = \int\limits_0^1 {\frac{{3 + 4x}}{{\sqrt {3 + 2x - {x^2}} }}dx} có giá trị là:

    Hướng dẫn:

     Ta có: \left( {3 + 3x - {x^2}} ight)' = 3 - 2x3 + 4x = 9 - 2\left( {3 - 2x} ight)

    \Rightarrow I = \int\limits_0^1 {\frac{{3 + 4x}}{{\sqrt {3 + 2x - {x^2}} }}dx}  = \int\limits_0^1 {\frac{{7 - 2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    = \int\limits_0^1 {\frac{7}{{\sqrt {3 + 2x - {x^2}} }}dx}  - \int\limits_0^1 {\frac{{2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_0^1 {\frac{7}{{\sqrt {3 + 2x - {x^2}} }}dx}  = \int\limits_0^1 {\frac{7}{{\sqrt {4 - {{\left( {x - 1} ight)}^2}} }}dx}

    Đặt x - 1 = 2\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = 0 \Rightarrow t =  - \frac{\pi }{6} \hfill \\  x = 1 \Rightarrow t = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^0 {\frac{{14\cos t}}{{\sqrt {4 - 4{{\sin }^2}t} }}dt}  = \frac{{7\pi }}{6}

    Xét  {I_2} = \int\limits_0^1 {\frac{{2\left( {2 - 2x} ight)}}{{\sqrt {3 + 2x - {x^2}} }}dx}

    Đặt t = 3 + 2x - {x^2} \Rightarrow dt = \left( {2 - 2x} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = 0 \Rightarrow t = 3 \hfill \\  x = 1 \Rightarrow t = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_2} = \int\limits_3^4 {\frac{2}{{\sqrt t }}dt}  = 4\left. {\left( {{t^{\frac{1}{2}}}} ight)} ight|_3^4 = 4\left( {2 - \sqrt 3 } ight)

    I = {I_1} - {I_2} = \frac{{7\pi }}{6} + 4\sqrt 3  - 8

  • Câu 16: Thông hiểu
    Tính tích phân theo tham số a

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}, với a e 0 có giá trị là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}  \hfill \\ = \left. {\left( { - \dfrac{1}{a}\cos ax + \dfrac{1}{a}\sin ax} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\ \end{matrix}

    \begin{matrix}= \left. {\left( {\dfrac{{\sqrt 2 }}{a}\sin \left( {ax - \dfrac{\pi }{4}} ight)} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\= \dfrac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\dfrac{\pi }{2} - \dfrac{\pi }{4}} ight) + \sin \left( {a\dfrac{\pi }{2} + \dfrac{\pi }{4}} ight)} ight] \hfill \\ \end{matrix}

     

  • Câu 17: Vận dụng cao
    Tìm tỉ số của a và b

    Biết rằng {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = aI = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = b\sqrt[3]{2} - \frac{3}{4}, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:

    Hướng dẫn:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = \frac{1}{2}\int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \frac{1}{2}\int\limits_{ - 1}^0 {tdt}  = \frac{1}{2}, với t = \tan x

    I = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = \frac{3}{4}\left. {\left[ {\sqrt[3]{{{{\left( {x + 2} ight)}^4}}}} ight]} ight|_{ - 1}^0 = \frac{3}{2}\sqrt[3]{2} - \frac{3}{4}

    \Rightarrow a = \frac{1}{2},b = \frac{3}{2} \Rightarrow \frac{a}{b} = \frac{1}{3}

  • Câu 18: Nhận biết
    Tìm giá trị của tích phân I

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    Gợi ý:

     Áp dụng công thức tích phân của hàm sin (x).

    Hướng dẫn:

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  = \left. {\left( { - \cos x} ight)} ight|_0^{\dfrac{\pi }{2}} = 1

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 19: Nhận biết
    Thực hiện tính tích phân I 

    Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx}  = \left. {\left( { - \frac{1}{x} + {x^2}} ight)} ight|_1^2 = \frac{7}{2}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 20: Nhận biết
    Tính tích phân I

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx}  = \left. {\left( { - \cos x - \sin x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} =  - 2

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 6 lượt xem
Sắp xếp theo