Luyện tập Khảo sát hàm số (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Đồ thị của hàm số y = f(x)

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Hướng dẫn:

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 2: Nhận biết
    Chọn hàm số tương ứng với đồ thị hàm số

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 3: Nhận biết
    Đồ thị hàm số ứng với hàm số nào

    Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Đồ thị hàm số ứng với hàm số nào

    Hướng dẫn:

     Dựa vào đồ thị hàm số ta thấy

    Đồ thị hàm số cắt trục tung tại điểm \left( {0;d} ight)

    => d > 0 => Loại đáp án  y = {x^3} - 4x - 1

    Mặt khác \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0 => Loại đáp án y =  - {x^3} + 4x + 2

    Hàm số đạt cực trị tại hai điểm {x_1};{x_2}, dựa vào hình vẽ ta thấy {x_1};{x_2} trái dấu

    => Loại đáp án y = {x^3} + 3{x^2} + 1

    Vậy đáp án là y = {x^3} - 4x + 1

  • Câu 4: Nhận biết
    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Hướng dẫn:

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 5: Vận dụng
    Giá trị của biểu thức K

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Hướng dẫn:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 6: Vận dụng cao
    Tìm m để bất phương trình nghiệm đúng

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Hướng dẫn:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng khi

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Hướng dẫn:

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 8: Thông hiểu
    Mệnh đề nào dưới đây đúng

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng
    Hướng dẫn:

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 9: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y =  - {x^4} + b{x^2} + c có bảng biến thiên như hình vẽ.

    Tính giá trị của biểu thức

    Tính giá trị của biểu thức H = 2c + b

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y\left( 0 ight) = 2 \Rightarrow c =  - 3 \hfill \\   \Rightarrow y =  - {x^4} + b{x^2} - 3 \hfill \\ \end{matrix}

    Mặt khác

    \begin{matrix}  f\left( 1 ight) =  - 2 \hfill \\   \Rightarrow  - 1 + b + c =  - 2 \hfill \\   \Rightarrow b + c =  - 1 \Rightarrow b = 2 \hfill \\   \Rightarrow 2c + b =  - 4 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số có đồ thị như hình vẽ sau:

    Chọn mệnh đề đúng

    Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  + \infty } \end{array}} ight. \Rightarrow a < 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có 

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b > 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} < 0 \Rightarrow c > 0} \end{array}} ight.

  • Câu 11: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết
    Số nghiệm thực của phương trình

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 13: Thông hiểu
    Khẳng định nào dưới đây sai

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 14: Vận dụng
    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Cho hàm số y = f\left( x ight) có đồ thị như hình vẽ:

    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Hỏi phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)?

    Hướng dẫn:

    Đặt t= x - 2;\left( {t >  - 2} ight)

    Phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 tương đương

    \left| {f\left( t ight) - 2} ight| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( t ight) = 3} \\   {f\left( t ight) = 1} \end{array}} ight.

    Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt t \in \left( { - 2; + \infty } ight)

    => Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Hướng dẫn:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu
    Chọn khẳng định đúng

    Cho đồ thị hàm số có đồ thị như hình vẽ:

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận đứng là: x = \frac{{ - d}}{c} và tiệm cận ngang là y = \frac{a}{c} ta có:

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - d}}{c} > 0} \\   {\dfrac{a}{c} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {cd < 0} \\   {ac > 0} \end{array}} ight.

    Đồ thị hàm số cắt Ox tại \left( {\frac{{ - b}}{a};0} ight), cắt Oy tại \left( {0;\frac{b}{d}} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - b}}{a} > 0} \\   {\dfrac{b}{d} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {ab < 0} \\   {bd > 0} \end{array}} ight.

    Với a > 0 \Rightarrow b < 0;c > 0;d < 0

    Với a < 0 \Rightarrow b > 0;c < 0;d > 0

  • Câu 19: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 20: Nhận biết
    Tính số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau đây:

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2} có hai nghiệm

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 5 lượt xem
Sắp xếp theo