Luyện tập Khảo sát hàm số (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Khẳng định nào dưới đây sai

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 2: Thông hiểu
    Khẳng định nào sau đây đúng

    Cho hàm số có đồ thị như hình vẽ sau đây:

    Khẳng định nào sau đây đúng

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy:

    Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương => x = \frac{{ - b}}{a} > 0

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm => y = \frac{{ - b}}{d} < 0

    Đồ thị hàm số nhận x = \frac{{ - b}}{d} < 0 làm tiệm cận đứng và y = \frac{a}{c} > 0 làm tiệm cận ngang

    Chọn a > 0 => b < 0; c > 0; d > 0 => \left\{ {\begin{array}{*{20}{c}}  {ad > 0} \\   {bc < 0} \end{array}} ight.

  • Câu 3: Thông hiểu
    Hàm số đã cho là hàm số nào

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 4: Nhận biết
    Đồ thị hàm số tương ứng với hàm số nào

    Cho hình vẽ:

    Đồ thị hàm số tương ứng với hàm số nào

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số y = \frac{1}{2}{x^3} - 3{x^2} + \frac{9}{2}x + 1 thỏa mãn.

  • Câu 5: Vận dụng
    Số nghiệm của phương trình

    Cho hàm số  y = f\left( x ight) có bảng biến thiên như sau:

    Số nghiệm của phương trình

    Số nghiệm của phương trình {f^2}\left( x ight) = 4 là:

    Hướng dẫn:

     

    Ta có: {f^2}\left( x ight) = 4 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2\left( * ight)} \\   {f\left( x ight) =  - 2\left( {**} ight)} \end{array}} ight.

    Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y = 2;y =  - 2

    Phương trình (*) có 1 nghiệm

    Phương trình (**) có 2 nghiệm

    => Số nghiệm của phương trình {f^2}\left( x ight) = 4 là 3 nghiệm

  • Câu 6: Nhận biết
    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Hướng dẫn:

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 7: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 8: Nhận biết
    Đồ thị hàm số có đường tiệm cận ngang

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 9: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng khi

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Hướng dẫn:

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 10: Nhận biết
    Đồ thị của hàm số y = f(x)

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Hướng dẫn:

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 11: Vận dụng
    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Cho hàm số y = f\left( x ight) có đồ thị như hình vẽ:

    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Hỏi phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)?

    Hướng dẫn:

    Đặt t= x - 2;\left( {t >  - 2} ight)

    Phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 tương đương

    \left| {f\left( t ight) - 2} ight| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( t ight) = 3} \\   {f\left( t ight) = 1} \end{array}} ight.

    Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt t \in \left( { - 2; + \infty } ight)

    => Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số bậc ba có bảng biến thiên như sau:

    Chọn đáp án đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Quan sát bảng biến thiên ta suy ra a < 0

    Ta có: có hai nghiệm dương nên \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - 2b}}{{3a}} > 0} \\   {{x_1}.{x_2} = \dfrac{c}{{3a}} > 0} \end{array}} ight. \Rightarrow b > 0;c < 0

  • Câu 13: Thông hiểu
    Mệnh đề nào dưới đây đúng

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng
    Hướng dẫn:

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 14: Vận dụng
    Số nghiệm của phương trình

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 15: Nhận biết
    Chọn hàm số tương ứng với đồ thị hàm số

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 16: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y =  - {x^4} + b{x^2} + c có bảng biến thiên như hình vẽ.

    Tính giá trị của biểu thức

    Tính giá trị của biểu thức H = 2c + b

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y\left( 0 ight) = 2 \Rightarrow c =  - 3 \hfill \\   \Rightarrow y =  - {x^4} + b{x^2} - 3 \hfill \\ \end{matrix}

    Mặt khác

    \begin{matrix}  f\left( 1 ight) =  - 2 \hfill \\   \Rightarrow  - 1 + b + c =  - 2 \hfill \\   \Rightarrow b + c =  - 1 \Rightarrow b = 2 \hfill \\   \Rightarrow 2c + b =  - 4 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng
    Tìm m để phương trình có 4 nghiệm

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

  • Câu 18: Nhận biết
    Xác định hàm số tương ứng với đồ thị hàm số

    Đường cong trong hình vẽ dưới đây là của hàm số nào?

    Xác định hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Đường tiệm cận ngang: y = \frac{1}{2}

    Đường tiệm cận đứng: x = 1

     

  • Câu 19: Thông hiểu
    Số nghiệm của phương trình

    Cho hàm số y = f\left( x ight) = a{x^4} + b{x^2} + c có đồ thị như hình dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) =  - 1 \Rightarrow f\left( x ight) = \frac{{ - 1}}{2}

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 chính là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y =  - \frac{1}{2}

    Quan sát đồ thị ta thấy đường thẳng y =  - \frac{1}{2} cắt đồ thị tại hai điểm

    => Phương trình 2f\left( x ight) =  - 1 có 2 nghiệm.

  • Câu 20: Vận dụng cao
    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Cho hàm số y = f\left( x ight) có bảng biến như sau:

    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Tìm tất cả các giá trị của tham số m để bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có một nghiệm?

    Hướng dẫn:

    Đặt t = \sqrt {x + 1}  + 1 \Rightarrow t \geqslant 1

    Khi đó bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m trở thành f\left( t ight) \leqslant m{\text{ }}\left( * ight)

    Bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có nghiệm khi bất phương trình f\left( t ight) \leqslant m có nghiệm t \geqslant 1

    \Leftrightarrow m \geqslant \mathop {\min \left( t ight)}\limits_{t \geqslant 1}  \Leftrightarrow m \geqslant  - 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (25%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 6 lượt xem
Sắp xếp theo