Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:
Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:
Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Cho hàm số có đồ thị như hình vẽ:
Hỏi phương trình có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng
?
Đặt
Phương trình tương đương
Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt
=> Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng
Đồ thị được cho dưới đây là đồ thị của hàm số nào?
Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Cho hàm số có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình là:
Ta có:
Khi đó suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.
=> Phương trình có 5 nghiệm
Cho hàm số có bảng biến thiên như hình vẽ.
Tính giá trị của biểu thức
Ta có:
Mặt khác
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:
Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?
Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức
=> Loại đáp án B và D
Ta có: => Loại đáp án B
Đường cong trong hình vẽ dưới đây là của hàm số nào?
Đường tiệm cận ngang:
Đường tiệm cận đứng:
Cho hàm số có đồ thị như hình vẽ sau đây:
Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Cho hình vẽ:
Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình
có bốn nghiệm thuộc đoạn
là:
Đặt
Ta có:
Ta có đồ thị hình vẽ như sau:
Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn khi phương trình (*) có hai nghiệm
Cho hàm số có bảng biến thiên như sau:
Số nghiệm của phương trình là:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Phương trình (*) có 1 nghiệm
Phương trình (**) có 2 nghiệm
=> Số nghiệm của phương trình là 3 nghiệm
Cho hàm số có đồ thị như hình dưới đây:
Số nghiệm của phương trình là:
Ta có:
Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số
với đường thẳng
Quan sát đồ thị ta thấy đường thẳng cắt đồ thị tại hai điểm
=> Phương trình có 2 nghiệm.
Cho hàm số có đạo hàm
liên tục trên
và có bảng biến thiên như sau:
Bất phương trình (m là tham số thực) nghiệm đúng với
khi và chỉ khi
Ta có:
Xét hàm số với
Ta có:
=> Hàm số g(x) luôn đồng biến trên
Ta có bảng biến thiên như sau:
=> (*) nghiệm đúng khi
Cho hàm số có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?
Dựa vào bảng biến thiên ta thấy:
Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1
=> Loại đáp án C và D
Hàm số đã cho nghịch biến trên mỗi khoảng xác định
Xét hàm số
=> Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A
Cho hàm số bậc ba có bảng biến thiên như sau:
Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:
Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Cho hàm số có bảng biến như sau:
Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Cho hàm số f(x) có bảng biến thiên như sau:
Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có
=> Đồ thị hàm số đường tiệm cận ngang là y = 2