Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Tìm nguyên hàm của hàm số
là
Công thức áp dụng:
Ta có:
Cho hình phẳng
giới hạn bới đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
bằng bao nhiêu?
Thể tích cần tìm là:
Một chất điểm A từ trạng thái nghỉ chuyển động với vận tốc nhanh dần đều, 8 giây sau nó đạt đến vận tốc 6m/s. Từ thời điểm đó nó chuyển động đều. Một chất điểm B khác xuất phát từ cùng vị trí A nhưng chậm hơn nó 12 giây với vận tốc nhanh dần đều và đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc B tại thời điểm đó.
Phương trình vận tốc của vật A là
Ta có:
Quãng đường vật A đi được sau đầu là:
Phương trình vận tốc của vật B là
=> Vận tốc của vật B khi hai vật gặp nhau là:
Hàm số
có nguyên hàm là:
Công thức áp dụng làm bài:
Ta có:
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Tích phân
. Giá trị của a là:
Ta có:
Xét
Xét
Theo đề bài:
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Biến đổi
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Cho giá trị của tích phân
,
. Giá trị a.b gần nhất với giá trị nào sau đây?
Áp dụng công thức nguyên hàm của hàm số lượng giác sin (x) và cos (x) và công thức nguyên hàm của phân thức.
Ta có:
Một ô tô xuất phát với vận tốc
sau khi đi được một khoảng thời gian
thì bất ngờ phanh gấp với vận tốc
và đi thêm được một khoảng thời gian
nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?
Ta có: do đó khi gặp chướng ngại vật vật có vận tốc là
=>
Vật dừng lại khi
Quãng đường vật đi được là
Tích phân
có giá trị là:
Ta có:
Đặt
Một ô tô đang chạy với vận tốc
thì dừng lái đạp phanh. Sau khi đạp phanh, ô tô di chuyển động chậm dần đều với vận tốc
, trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phan đến lúc dừng hẳn là:
Cho giá trị của tích phân
,
.
Giá trị của
là:
Áp dụng công thức nguyên hàm của hàm số lũy thừa.
Ta có:
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Một vật chuyển động với vận tốc ban đầu là
và gia tốc
. Hỏi sau khi chuyển động với gia tốc đó được 2 giây thì vận tốc của vật là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc nên
Vận tốc của vật khi chuyển động với gia tốc đó được là
Tìm nguyên hàm của hàm số ![]()
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian
là
. Biết vận tốc ban đầu bằng
, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Vận tốc của vật được tính theo công thức
=> Quãng đường vật di chuyển được tính theo công thức:
Ta có:
Tìm họ nguyên hàm của hàm số ![]()
Học sinh sử dụng công thức sau:
Ta có:
Tích phân
có giá trị là:
Thiết diện của vật thể cắt bởi mặt phẳng
vuông góc với trục
tại điểm có hoành độ
là một hình chữ nhật có độ dài hai cạnh
và
. Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
.
Do thiết diện là hình chữ nhật nên diện tích của thiết diện là
Ta có thể tích cần tính là:
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Tính thể tích của một vật thể nằm giữa hai mặt phẳng
, biết thiết diện của vật thể cắt bởi mặt phẳng
vuông góc với trục
tại điểm có hoành độ là một tam giác đều có cạnh bằng ![]()
Diện tích thiết diện là
Ta có thể tích cần tính là
Cho
với a, b, c là các số hữu tỉ. Mệnh đề nào sau đây đúng.
Ta có
Tính
Đặt
Suy ra
Vậy
Như vậy, ta được:
Suy ra ta có: hay
Tích phân
có giá trị là:
Áp dụng công thức tích phân của hàm sin (x).
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Tích phân
. Giá trị nguyên của a là:
Ta có:
Đặt
Đổi cận
Theo đề bài:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.