Nghiệm nguyên nhỏ nhất của bất phương trình là:
17 || x=17 || x bằng 17 || X=17
Nghiệm nguyên nhỏ nhất của bất phương trình là:
17 || x=17 || x bằng 17 || X=17
Điều kiện:
Vậy nghiệm nguyên nhỏ nhất .
Nghiệm nguyên nhỏ nhất của bất phương trình là:
17 || x=17 || x bằng 17 || X=17
Nghiệm nguyên nhỏ nhất của bất phương trình là:
17 || x=17 || x bằng 17 || X=17
Điều kiện:
Vậy nghiệm nguyên nhỏ nhất .
Bất phương trình có tập nghiệm là:
Ta có
Vậy BPT có tập nghiệm là .
Tìm tập nghiệm của bất phương trình sau:
Ta có:
Điều kiện xác định của Bất phương trình là?
Biểu thức xác định khi và chỉ khi:
Bất phương trình có tập nghiệm là:
Điều kiện
Ta có:
Vậy BPT có tập nghiệm là .
Tập nghiệm của bất phương trình là:
Điều kiện: .
Đặt .
Bất phương trình đã cho trở thành
Đặt
Khi đó hoặc
- Với
- Với
Kết hợp điều kiện, ta được nghiệm của bất phương trình đã cho là hoặc
.
Tập nghiệm của bất phương trình là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Tập nghiệm của bất phương trình là:
Ta có:
Vậy BPT có tập nghiệm là .
Tập nghiệm của bất phương trình là:
Ta có:
Bất phương trình có tập nghiệm là:
Ta có:
Vậy .
Điều kiện để bất phương trình sau có nghĩa là
Điều kiện:
Nghiệm nguyên lớn nhất của bất phương trình là:
x=1 || X=1 || x bằng 1
Nghiệm nguyên lớn nhất của bất phương trình là:
x=1 || X=1 || x bằng 1
Vậy nghiệm nguyên lớn nhất của BPT là .
Tập nghiệm của bất phương trình là:
Ta có:
Bất phương trình có tập nghiệm là:
Điều kiện:
Ta có:
Vậy BPT đã cho có tập nghiệm là .
Tập nghiệm của bất phương trình là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Nếu đặt thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Ta có:
Vậy thay , ta được
.
Cho bất phương trình: . Tìm tập nghiệm của bất phương trình.
Ta có:
Đặt , BPT
.
Đặt .
Lập bảng xét dấu , ta được nghiệm:
.
Vậy tập nghiệm của BPT là .
Tập nghiệm của bất phương trình là:
Ta có:
.
Gọi là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Gọi là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Ta có:
Đặt , phương trình trên tương đương với
(vì
).
Từ đó suy ra
Vậy tổng hai nghiệm bằng 0.
Nếu đặt thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình
Vậy BPT trở thành: .