Luyện tập Số phức (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Biểu diễn số phức z

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

    Hướng dẫn:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 2: Vận dụng
    Điểm biểu diễn số phức z

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2}, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?

    Hướng dẫn:

    Do M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2} nên M\left( {1; - 1} ight),N\left( {3;2} ight)

    Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ G\left( {\frac{4}{3};\frac{1}{3}} ight)

    Vậy G là điểm biểu diễn của số phức: z = \frac{4}{3} + \frac{1}{3}i

  • Câu 3: Thông hiểu
    Tìm phần thực và phần ảo của số phức

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

    Hướng dẫn:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 4: Nhận biết
    Số phức có phần thực bằng

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi

    (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 5: Nhận biết
    Số phức liên hợp của số phức 3 - 2i

    Số phức liên hợp của số phức 3 - 2i là

    Gợi ý:

     Cho số phức z = a + bi. Số phức \overline z = a – bi gọi là số phức liên hợp với số phức trên hay \overline z = \overline {a + bi} = a - bi

    Hướng dẫn:

     \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 2i}  = 3 - ( - 2i) = 3 + 2i

  • Câu 6: Vận dụng
    Số phức đối của số phức z

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

    Hướng dẫn:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 7: Vận dụng cao
    Phần thực của số phức z

    Cho số phức z = {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{22}}. Phần thực của số phức z là:

    Hướng dẫn:

    Ta có: {S_n} = 1 + {p^1} + {p^2} + ... + {p^n} = \frac{{{p^{n + 1}} - 1}}{{p - 1}}

    \Rightarrow z = \frac{{{{\left( {1 + i} ight)}^{23}} - 1}}{i} - 1 - \left( {1 + i} ight)

    \Rightarrow z =  - 2050 - 2048i =  - {2^{11}} - 2 - 2048i

  • Câu 8: Thông hiểu
    Phần thực và phần ảo của số phức

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

    Hướng dẫn:

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 9: Thông hiểu
    Phần thực của số phức

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Hướng dẫn:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 10: Vận dụng
    Biểu diễn số phức z

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Hướng dẫn:

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 11: Nhận biết
    Số phức liên hợp của số phức

    Số phức liên hợp của số phức 5 - 3i là

    Gợi ý:

     Cho số phức z = a + bi. Số phức \overline z = a – bi gọi là số phức liên hợp với số phức trên hay \overline z = \overline {a + bi} = a - bi

    Hướng dẫn:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 12: Nhận biết
    Số phức 5 + 6i có phần thực bằng

    Số phức 5 + 6i có phần thực bằng 

    Gợi ý:

    Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 13: Thông hiểu
    Tìm phần ảo của số phức

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Hướng dẫn:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 14: Nhận biết
    Tìm số phức thỏa mãn điều kiện

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 15: Thông hiểu
    Tìm phần thực và phần ảo của số phức

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi, kết hợp với công thức số phức liên hợp \overline z  = \overline {a + bi}  = a - bi

    Hướng dẫn:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 16: Nhận biết
    Phần thực và phần ảo của số phức liên hợp của số phức

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 17: Vận dụng cao
    Tìm x, y thỏa mãn điều kiện

    Tìm tất cả các số thực x, y sao cho {x^2} - 1 + yi =  - 1 + 2i

    Gợi ý:

     Áp dụng tính chất 2 số phức bằng nhau.

    Hướng dẫn:

     Ta có: {x^2} - 1 + yi =  - 1 + 2i \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 1 =  - 2 \hfill \\  y = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = 0 \hfill \\  y = 2 \hfill \\ \end{gathered}  ight.

  • Câu 18: Thông hiểu
    Tính giá trị x và y thỏa mãn điều kiện

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

    Hướng dẫn:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 19: Vận dụng
    Phương trình biểu diễn các số phức z

    Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện \left| {zi - \left( {2 + i} ight)} ight| = 2 là:

    Hướng dẫn:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {zi - \left( {2 + i} ight)} ight| = 2

    \Leftrightarrow \left| {xi - y - 2 - i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 2} ight)^2} = 4

  • Câu 20: Vận dụng
    Chọn khẳng định trong các khẳng định dưới đây

    Cho số phức z thỏa mãn \left| {z - 1 + i} ight| = 2. Chọn phát biểu đúng:

    Hướng dẫn:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \left| {z - 1 + i} ight| = 2

    \Leftrightarrow \left| {\left( {x - 1} ight) + \left( {y + 1} ight)i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 1} ight)^2} = 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (30%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 9 lượt xem
Sắp xếp theo