Giá trị lớn nhất của hàm số trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:
Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Giá trị lớn nhất của hàm số trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:
Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Giá trị nhỏ nhất của hàm số là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Cho hàm số có bảng biến thiên như hình dưới đây.
Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.
Cho hàm số . Gọi M là giá trị lớn nhất của hàm số trên khoảng . Tìm M.
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta có M = 1
Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.
Biết rằng . Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?
Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)
Ta lại có
f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)
=> 2f(2) – f(1) – f(3) > 0
Theo bài ra ta có:
f(0) + f(1) + f(3) = f(4) + 2f(2)
=> f(0) – f(4) = 2f(2) – f(1) – f(3) > 0
=> f(0) – f(4) > 0 => f(0) > f(4)
=> GTNN đạt được tại x = 4
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số trên đoạn [0; 4] bằng -1?
Ta có:
Với ta được hàm số f(x) đồng biến trên khoảng (0; 4)
=>
Theo bài ra ta có:
Kết hợp với điều kiện => m = -3 là giá trị cần tìm
Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.
Cho hàm số (với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].
Xét hàm số trên đoạn [0; 3] ta có:
=> Hàm số f(x) đồng biến trên (0; 3)
=>
Theo bài ra ta có:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:
Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Gợi ý: Mối quan hệ giữa gia tốc và vận tốc
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:
=> Vận tốc lớn nhất đạt được khi t = 2
Cho hàm số y = f(x) xác định, liên tục trên và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Tìm giá trị nhỏ nhất của hàm số trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:
Từ bảng biến thiên ta có:
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Cho hàm số . Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Học sinh cần nhớ công thức
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số trên tập . Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta được:
Cho hàm số . Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Đặt
Khi đó
Vậy M = 1; m = 0 => M = m + 1
Tìm giá trị lớn nhất của hàm số trên đoạn [-6; 6]
Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]
Ta có: g’(x) = -2x – 4
=> g’(x) = 0 => x = -2 thuộc [-6; 6]
Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)
Ta tính được:
Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:
Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:
Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]
Ta có: f(x) ∈ [-2; 3] với =>
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:
Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].
Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:
f’(x) = 4x3 – 4x
f’(x) = 0 =>
Tính f(0) = 1; f(1) = 0; f(2) = 9
Vậy