Luyện tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm GTLN của hàm số

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Hướng dẫn:

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 2: Thông hiểu
    Tính giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 4: Thông hiểu
    Tìm GTLN của hàm số

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 5: Vận dụng
    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Biết rằng f\left( 0 ight) + f\left( 1 ight) + f\left( 3 ight) = f\left( 4 ight) + 2f\left( 2 ight). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?

    Hướng dẫn:

    Ta có bảng xét dấu như sau:

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)

    Ta lại có

    f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)

    => 2f(2) – f(1) – f(3) > 0

    Theo bài ra ta có:

    f(0) + f(1) + f(3) = f(4) + 2f(2)

    => f(0) – f(4) = 2f(2) – f(1) – f(3) > 0

    => f(0) – f(4) > 0 => f(0) > f(4)

    => GTNN đạt được tại x = 4

  • Câu 6: Vận dụng
    Tìm m để hàm số đạt giá trị lớn nhất

    Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{{{x^2} - {m^2} - 2}}{{x - m}} trên đoạn [0; 4] bằng -1?

    Hướng dẫn:

    Ta có: f'\left( x ight) = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} ight)}^2}}} > 0;\forall m e 0

    Với x = m e \left[ {0;4} ight] \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. ta được hàm số f(x) đồng biến trên khoảng (0; 4)

    => \mathop {\max }\limits_{\left[ {0;4} ight]} f\left( x ight) = f\left( 4 ight) = \frac{{2 - {m^2}}}{{4 - m}}

    Theo bài ra ta có: \frac{{2 - {m^2}}}{{4 - m}} =  - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 3} \end{array}} ight.

    Kết hợp với điều kiện \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. => m = -3 là giá trị cần tìm

    Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.

  • Câu 7: Vận dụng
    Xác định giá trị lớn nhất của hàm số

    Cho hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} (với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].

    Hướng dẫn:

    Xét hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} trên đoạn [0; 3] ta có:

    f'\left( x ight) = \frac{{8 + {m^2}}}{{{{\left( {x + 8} ight)}^2}}} > 0;\forall x \in \left[ {0;3} ight]

    => Hàm số f(x) đồng biến trên (0; 3)

    => \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) = f\left( 0 ight) = \frac{{ - {m^2}}}{8}

    Theo bài ra ta có:

    \begin{matrix}  \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) =  - 2 \hfill \\   \Leftrightarrow  - \dfrac{{{m^2}}}{8} =  - 2 \hfill \\   \Leftrightarrow {m^2} = 16 \Leftrightarrow m =  \pm 4 \hfill \\   \Rightarrow {m_{\max }} = 4 \hfill \\ \end{matrix}

  • Câu 8: Vận dụng
    Tính giá trị biểu thức

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= \sqrt {1 + x}  + \sqrt {1 - x}. Giá trị của M – 2m2 bằng:

    Hướng dẫn:

    Điều kiện xác định \left\{ {\begin{array}{*{20}{c}}  {1 + x \geqslant 0} \\   {1 - x \geqslant 0} \end{array}} ight. \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = \sqrt {1 + x}  + \sqrt {1 - x} trên [-1; 1] có:

    \begin{matrix}  y' = \dfrac{{ - 1}}{{2\sqrt {1 + x} }} + \dfrac{1}{{2\sqrt {1 - x} }} \hfill \\  y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   {\sqrt {1 + x}  = \sqrt {1 - x} } \end{array}} ight. \Leftrightarrow x = 0 \hfill \\ \end{matrix}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = \sqrt 2 } \\   {f\left( 0 ight) = 2} \end{array}} ight.

    Vậy \left\{ {\begin{array}{*{20}{c}}  {m = \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = \sqrt 2 } \\   {M = \mathop {\max }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 2} \end{array}} ight. \Rightarrow M - 2{m^2} = 2 - 2.2 =  - 2

  • Câu 9: Vận dụng
    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Gợi ý:

     Gợi ý: Mối quan hệ giữa gia tốc và vận tốc

    a\left( t ight) = v'\left( t ight)

    Hướng dẫn:

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 10: Nhận biết
    Chọn câu đúng

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 11: Thông hiểu
    Tìm Min của f(x) trên khoảng

    Tìm giá trị nhỏ nhất của hàm số f\left( x ight) = \frac{2}{{{x^2}}} - \frac{1}{{2x - 2}} trên khoảng (0; 1)

    Hướng dẫn:

    Hàm số xác định và liên tục trên (0; 1) ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{ - 4}}{{{x^3}}} + \dfrac{1}{{2{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^3} - 8{x^2} + 16x - 8 = 0 \hfill \\   \Leftrightarrow \left( {x - 2} ight)\left( {{x^2} - 6x + 4} ight) = 0 \hfill \\   \Rightarrow x = 3 - \sqrt 5  \hfill \\ \end{matrix}

    Lập bảng biến thiên:

    Tìm Min của f(x) trên khoảng

    Từ bảng biến thiên ta có: \mathop {\min }\limits_{\left( {0;1} ight)} f\left( x ight) = \frac{{11 + 5\sqrt 5 }}{4}

  • Câu 12: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Hướng dẫn:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 13: Vận dụng
    Tìm số thực m thỏa mãn điều kiện

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Hướng dẫn:

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết
    Tìm GTNN của hàm số trên khoảng

    Cho hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}}. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].

    Gợi ý:

    Học sinh cần nhớ công thức \left( {\frac{u}{v}} ight)' = \frac{{u'v - uv'}}{{{v^2}}}

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}} trên [2; 4] ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \in \left[ {2;4} ight]} \\   {{x^2} - 2x - 3 = 0} \end{array}} ight. \Rightarrow x = 3 \hfill \\ \end{matrix}

    Tính f(2) = 7; f(3) = 6; f(4) = 19/3

    Vậy \mathop {\min }\limits_{\left[ {2;4} ight]} f\left( x ight) = f\left( 3 ight) = 6

  • Câu 15: Thông hiểu
    Tìm GTLN, GTNN của hàm số

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Hướng dẫn:

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

    Hướng dẫn:

    Đặt t = \sin x,t \in \left[ { - 1;1} ight]

    Khi đó y = f\left( t ight) = \frac{{t + 1}}{{{t^2} + t + 1}}

    \begin{matrix}  f'\left( t ight) = \dfrac{{ - {t^2} - 2t}}{{{{\left( {{t^2} + t + 1} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( {tm} ight)} \\   {t =  - 2\left( L ight)} \end{array}} ight. \hfill \\  f\left( 0 ight) = 1;f\left( { - 1} ight) = 0;f\left( 1 ight) = \frac{2}{3} \hfill \\ \end{matrix}

    Vậy M = 1; m = 0 => M = m + 1

  • Câu 17: Vận dụng
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \left| { - {x^2} - 4x + 5} ight| trên đoạn [-6; 6] 

    Hướng dẫn:

    Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]

    Ta có: g’(x) = -2x – 4

    => g’(x) = 0 => x = -2 thuộc [-6; 6]

    Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)

    Ta tính được: \left\{ {\begin{array}{*{20}{c}}  {g\left( { - 6} ight) =  - 7} \\   {g\left( { - 2} ight) = 9} \\   {g\left( 6 ight) =  - 55} \\   {g\left( 1 ight) = g\left( { - 5} ight) = 0} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ { - 6;6} ight]} f\left( x ight) = 55

  • Câu 18: Nhận biết
    GTLN của hàm số trên khoảng là bao nhiêu?

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Hướng dẫn:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 19: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 20: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].

    Hướng dẫn:

    Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:

    f’(x) = 4x3 – 4x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}{x \in \left[ {0;2} ight]} \\   {4{x^3} - 4x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Tính f(0) = 1; f(1) = 0; f(2) = 9

    Vậy \mathop {\max }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 2 ight) = 9

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 18 lượt xem
Sắp xếp theo