Luyện tập BPT mũ và BPT lôgarit (Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tìm nghiệm nguyên lớn nhất

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

    Đáp án là:

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

     Điều kiện: x>0

    Ta có: \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight)

    \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0

    \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0

    \Leftrightarrow 4 < \log _2^2x < 9 \Leftrightarrow \left[ \begin{gathered}  2 < {\log _2}x < 3 \hfill \\   - 3 < {\log _2}x <  - 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4 < x < 8 \hfill \\  \frac{1}{8} < x < \frac{1}{4} \hfill \\ \end{gathered}  ight..

    Vậy nghiệm nguyên lớn nhất của bất phương trình là: x=7.

  • Câu 2: Vận dụng
    Tìm nghiệm nguyên

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

     

    BPT\Leftrightarrow \left\{ \begin{gathered}  1 - {x^2} > 0 \hfill \\  1 - x > 0 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) \leqslant  - {\log _3}\left( {1 - x} ight) \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) + {\log _3}\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

     

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  \left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 1 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x({x^2} - x - 1) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x \leqslant \frac{{1 + \sqrt 5 }}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x < 1

    Vậy nghiệm nguyên nhỏ nhất của BPT là x=0.

  • Câu 3: Nhận biết
    Tìm điều kiện xác định

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}(4x + 2) - {\log _{\frac{1}{2}}}(x - 1) > lo{g_{\frac{1}{2}}}x là:

    Hướng dẫn:

     BPT xác định khi:  \left\{ \begin{gathered}  x > 0 \hfill \\  4x + 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x >  - \frac{1}{2} \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

  • Câu 4: Thông hiểu
    Đặt t

    Cho bất phương trình \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}. Nếu đặt t = {\log _3}x thì bất phương trình trở thành: 

    Hướng dẫn:

     Ta có: \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2} \Leftrightarrow \frac{{1 - \frac{1}{2}{{\log }_3}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}

    \Leftrightarrow \frac{{2 - {{\log }_3}x}}{{2\left( {1 + {{\log }_3}x} ight)}} \leqslant \frac{1}{2} \Leftrightarrow 1 - \frac{{2 - {{\log }_3}x}}{{1 + {{\log }_3}x}} \geqslant 0

    \Leftrightarrow \frac{{2{{\log }_3}x - 1}}{{1 + {{\log }_3}x}} \geqslant 0

    Hay  \frac{{2t - 1}}{{1 + t}} \geqslant 0.

  • Câu 5: Thông hiểu
    Tìm tập nghiệm của BPT

    Bất phương trình {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2 có tập nghiệm là:

    Hướng dẫn:

     Xét: x > 0 \Rightarrow {2^x} > {2^0} = 1 \Rightarrow {2^x} + 1 > 2

    \Rightarrow {\log _2}\left( {{2^x} + 1} ight) > {\log _2}2 = 1\left( 1 ight)

    Tương tự, ta cũng có: x > 0 \Rightarrow {4^x} > {4^0} = 1 \Rightarrow {4^x} + 2 > 2 + 1 = 3

    \Rightarrow {\log _3}\left( {{4^x} + 2} ight) > {\log _3}3 = 1\left( 2 ight)

    Cộng vế với vế của (1) và (2) ta được: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) > 2 

    Mà BPT: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2 nên x > 0 \, (L)

    Xét x \leqslant 0 \Rightarrow {2^x} \leqslant {2^0} = 1 \Rightarrow {2^x} + 1 \leqslant 2

    \Rightarrow {\log _2}\left( {{2^x} + 1} ight) \leqslant {\log _2}2 = 1\left( 3 ight)

    Tương tự, ta cũng có: x \leqslant 0 \Rightarrow {4^x} \leqslant {4^0} = 1 \Rightarrow {4^x} + 2 \leqslant 2 + 1 = 3

    \Rightarrow {\log _3}\left( {{4^x} + 2} ight) \leqslant {\log _3}3 = 1\left( 4 ight)

    Cộng vế với vế của (3) và (4) ta được: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2\left( {TM} ight)

    Vậy x \leq 0 hay x \in \left( { - \infty ;0} ight].

  • Câu 6: Nhận biết
    Điều kiện xác định của bất phương trình

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}\left[ {{{\log }_2}(2 - {x^2})} ight] > 0 là:

    Hướng dẫn:

     BPT xác định khi : \left\{ \begin{gathered}  2 - {x^2} > 0 \hfill \\  {\log _2}(2 - {x^2}) > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  2 - {x^2} > 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  1 - {x^2} > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\   - 1 < x < 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x < 1.

    Vậy BPT xác định khi x \in \left( { - 1;1} ight).

  • Câu 7: Vận dụng
    Tìm tập nghiệm của BPT logarit

    Tập nghiệm của bất phương trình {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _2}\left( {2x + 1} ight)  là:

    Hướng dẫn:

    Điều kiện: \left\{ \begin{gathered}  2{x^2} + 3x + 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x >  - \frac{1}{2} \hfill \\  x >  - \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - \frac{1}{2}.

    Ta có: {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _2}\left( {2x + 1} ight)

    \Leftrightarrow {\log _4}\left( {2{x^2} + 3x + 1} ight) > {\log _4}{\left( {2x + 1} ight)^2}

    \Leftrightarrow 2{x^2} + 3x + 1 > 4{x^2} + 4x + 1

    \Leftrightarrow 2{x^2} + x < 0 \Leftrightarrow  - \frac{1}{2} < x < 0 (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là S = \left( { - \frac{1}{2};0} ight).

  • Câu 8: Thông hiểu
    Giải bất PT

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

    Hướng dẫn:

     TXĐ \Leftrightarrow \left\{ \begin{gathered}  {x^2} - x - 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x > 2 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 2

    BPT \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1

    \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{{2^{ - 1}}}}\left( {x - 1} ight) + 1

    \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) + {\log _2}\left( {x - 1} ight) - 1 \geqslant 0

    \Leftrightarrow {\log _2}\frac{{\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)}}{2} \geqslant 0

    \Leftrightarrow \frac{{\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)}}{2} \geqslant 1 \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) \geqslant 2

    \Leftrightarrow x\left( {{x^2} - 2x - 1} ight) \geqslant 0

    \Leftrightarrow {x^2} - 2x - 1 \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  x \leqslant 1 - \sqrt 2 \left( {L} ight) \hfill \\  x \geqslant 1 + \sqrt 2 \left( {TM} ight) \hfill \\ \end{gathered}  ight.

    \Rightarrow x \geqslant 1 + \sqrt 2

  • Câu 9: Thông hiểu
    Tìm tập nghiệm

    Tập nghiệm của bất phương trình {\log _2}({x^2} - 3x + 1) \leqslant 0 là?

    Hướng dẫn:

     BPT \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {\log _2}({x^2} - 3x + 1) \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {x^2} - 3x + 1 \leqslant 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {x^2} - 3x + 1 \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x < \frac{{3 - \sqrt 5 }}{2} \vee x > \frac{{3 + \sqrt 5 }}{2} \hfill \\  0 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow x \in \left[ {0;\frac{{3 - \sqrt 5 }}{2}} ight) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} ight]

    Vậy bất PT có tập nghiệm là S = \left[ {0;\frac{{3 - \sqrt 5 }}{2}} ight) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} ight].

  • Câu 10: Vận dụng
    Tìm tập nghiệm của BPT logarit

    Tập nghiệm của bất phương trình  {\log _x}\left( {125x} ight).{\log _{25}}x > \frac{3}{2} + \log _5^2x là:

    Hướng dẫn:

     Điều kiện: 0 < x e 1{\text{   }}

    Ta có:

    {\log _x}(125x).{\log _{25}}x > \frac{3}{2} + \log _5^2x \Leftrightarrow \left( {{{\log }_x}{5^3} + {{\log }_x}x} ight).{\log _{{5^2}}}x > \frac{3}{2} + \log _5^2x

    \Leftrightarrow \left( {3{{\log }_x}5 + 1} ight).\left( {\frac{1}{2}{{\log }_5}x} ight) > \frac{3}{2} + \log _5^2x

    \Leftrightarrow \frac{3}{2} + \frac{1}{2}{\log _5}x > \frac{3}{2} + \log _5^2x \Leftrightarrow 2\log _5^2x - {\log _5}x < 0

    \Leftrightarrow 0 < {\log _5}x < \frac{1}{2} \Leftrightarrow {5^0} < x < {5^{\frac{1}{2}}} \Leftrightarrow 1 < x < \sqrt 5 (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là S = \left( {1;\sqrt 5 } ight) .

  • Câu 11: Vận dụng
    Tìm tập nghiệm của BPT logarit

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

    Hướng dẫn:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 12: Thông hiểu
    Tìm tập nghiệm của BPT logarit

    Tập nghiệm của bất phương trình {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 là:

    Hướng dẫn:

    {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 \Leftrightarrow {\log _3}\left( {x - 1} ight) \geqslant {\log _3}\left( {{x^2} - 6x + 5} ight)

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 6x + 5 > 0 \hfill \\  x - 1 \geqslant {x^2} - 6x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x < 1 \vee x > 5 \hfill \\  1 \leqslant x \leqslant 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow 5 < x \leqslant 6

     Vậy tập nghiệm của BPT là  S = \left( {5;6} ight].

  • Câu 13: Thông hiểu
    Nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

     Điều kiện: x > 2

    {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 \Leftrightarrow {\log _{0,2}}\left[ {x\left( {x - 2} ight)} ight] < {\log _{0,2}}3

    \Leftrightarrow {x^2} - 2x - 3 > 0 \Leftrightarrow \left[ \begin{gathered}  x <  - 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra x > 3

  • Câu 14: Nhận biết
    Tìm điều kiện xác định

    Điều kiện xác định của bất phương trình {\log _2}(x - 5) -2 {\log _3}(x + 2) \leq3 là:

    x > 5 || X>5 || x>5 || x lớn hơn 5

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _2}(x - 5) -2 {\log _3}(x + 2) \leq3 là:

    x > 5 || X>5 || x>5 || x lớn hơn 5

     BPT xác định khi và chỉ khi: \left\{ \begin{gathered}  x - 5 > 0 \hfill \\  x + 2 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 5 \hfill \\  x >  - 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 5

  • Câu 15: Nhận biết
    Tìm điều kiện để BPT có nghĩa

    Điều kiện để bất phương trình sau có nghĩa là \ln \frac{{{x^2} - 1}}{x} < 0

    Hướng dẫn:

     Điều kiện: \frac{{{x^2} - 1}}{x} > 0 \Leftrightarrow \left[ \begin{gathered}   - 1 < x < 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight.

  • Câu 16: Nhận biết
    Điền đáp án

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

     Điều kiện: \left\{ \begin{gathered}  5x + 15 > 0 \hfill \\  {x^2} + 6{\text{x}} + 8 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 3 \hfill \\  \left[ \begin{gathered}  x >  - 2 \hfill \\  x <  - 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - 2

    Vậy để BPT xác định khi và chỉ khi x >  - 2.

  • Câu 17: Vận dụng
    Tìm nghiệm nguyên MIN

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Theo bài toán, ta xét điều kiện của BPT là: x > 0;x e 1;x e 3.

    Ta có: {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0 \Leftrightarrow \frac{{ - 1}}{{{{\log }_3}x.\left( {{{\log }_3}x - 1} ight)}} < 0

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}x < 0 \hfill \\  {\log _3}x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  0 < x < 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

  • Câu 18: Nhận biết
    Tìm điều kiện xác định

    Tìm điều kiện xác định của bất phương trình sau:

    {\log _2}(x + 1) - 2{\log _4}(5 - x) < 1 - {\log _2}(x - 2)

    Hướng dẫn:

    BPT xác định khi : \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  5 - x > 0 \hfill \\  x - 2 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  x < 5 \hfill \\  x > 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow 2 < x < 5

  • Câu 19: Vận dụng
    Nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

     BPT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\   + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) \geqslant {\log _{{2^2}}}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) - 1 \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \geqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) \geqslant 2 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x \geqslant 4 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x \geqslant 8 \hfill \\ \end{gathered}  ight. \Rightarrow x \geqslant 8

    Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.

     

  • Câu 20: Vận dụng
    Giải BPT

    Tập nghiệm của bất phương trình {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 là:

    Hướng dẫn:

     Điều kiện: \left\{ \begin{gathered}  2x - 1 > 0 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

    Ta có: {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > {\log _{\frac{1}{2}}}1

    \Leftrightarrow \left\{ \begin{gathered}  {\log _2}(2x - 1) < 1 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  0 < 2x - 1 < 2 \hfill \\  2x - 1 > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow 1 < x < \frac{3}{2} (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là  S = \left( {1;\frac{3}{2}} ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 5 lượt xem
Sắp xếp theo