Luyện tập Phương trình bậc hai với hệ số thực (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng cao
    Tìm phần ảo

    Biết {z_1},{z_2} = 5 - 4i{z_3} là ba nghiệm của phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight),

    trong đó {z_3} là nghiệm có phần ảo dương. Phần ảo của số phức w = {z_1} + 3{z_2} + 2\,{z_3} bằng:

    Hướng dẫn:

     Xét phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight) là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là z_1.

    Do đó phương trình tương đương với:

    \left( {z - {z_1}} ight)\left( {{z^2} + a'z + b'} ight) = 0\,\,\,\left( {a',b' \in \mathbb R} ight)

    \Leftrightarrow \left[ \begin{array}{l}z = {z_1}\,\, \in \mathbb R\\{z^2} + a'z + b' = 0\,\,\,\left( 1 ight)\end{array} ight..

    Nên {z_3},{z_2} = 5 - 4i là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).

    Suy ra .{z_3} = 5 + 4i

    Khi đó : w = {z_1} + 3{z_2} + 2\,{z_3} = {z_1} + 3.\left( {5 - 4i} ight) + 2.\left( {5 + 4i} ight) = \left( {25 + 2{z_3}} ight) - 4i.

    Vậy phần ảo của w = {z_1} + 3{z_2} + 2\,{z_3}-4.

  • Câu 2: Vận dụng cao
    Tìm giá trị nhỏ nhất

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

  • Câu 3: Nhận biết
    Tìm nghiệm

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Hướng dẫn:

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 4: Nhận biết
    Nghiệm của PT bậc 3

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Hướng dẫn:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 5: Vận dụng cao
    Giá trị lớn nhất

    Cho số phức z thoả mãn |z+\overline{z}|+ |z-\overline{z}|=|z^2| . Giá trị lớn nhất của biểu thức P=|z-5-2i| bằng?

    Hướng dẫn:

    Đặt z=a+bi \,(a,b \in \mathbb R).

    Từ giả thiết |z+\overline{z}|+ |z-\overline{z}|=|z^2|

    \Leftrightarrow 2|a|+2|b|=a^2+b^2\Leftrightarrow(|a|-1)^2+(|b|-1)^2=2   (1).

    Ta có P=|z-5-2i| =\sqrt{ (a-5)^2+(b-2)^2}= \sqrt {2|a|+2|b|-10a-4b+29}.

    Dễ thấy P lớn nhất khi a, b \leq 0.

    Khi đó P=\sqrt {-12a-6b+29}=\sqrt{6[-2(a+1)-(b+1)]+47}

    Do a, b \leq 0 nên từ (1) ta có (a+1)^2+(b+1)^2=2.

    Suy ra P=\sqrt{6[-2(a+1)-(b+1)]+47} \leq \sqrt {6\sqrt{(2^2+1^2)[(a+1)^2+(b+1)^2]+47}}

    =\sqrt {47+6\sqrt{10}}==\sqrt {2} +3\sqrt 5

    Dấu = xảy ra khi \left\{\begin{matrix} (a+1)^2+(b+1)^2=2 \\ \dfrac{a+1}{2} =\dfrac{b+1}{1} \\ a+1, b+1 <0 \end{matrix}ight.  \Leftrightarrow \left\{\begin{matrix} a=-1-\dfrac{2\sqrt{10}}{5} \\ b=-1-\dfrac{\sqrt{10}}{5}\end{matrix}ight..

  • Câu 6: Nhận biết
    Tìm số phức z

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    Hướng dẫn:

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 7: Vận dụng cao
    Tìm số phần tử

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Đáp án là:

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Điều kiện: m > 0.

    Đặt z = x + yi\left( {x,y \in \mathbb{R}} ight).

    Theo giả thiết z.\bar z = 1 \Leftrightarrow {\left| z ight|^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\left( {{C_1}} ight).

    \left( {{C_1}} ight) là đường tròn tâm O(0; 0), bán kính {R_1} = 1.

    Mặt khác  {R_1} = 1

    \left( {{C_2}} ight) là đường tròn tâm I\left( {\sqrt 3 ; - 1} ight), bán kính {R_2} = m.

    Để tồn tại duy nhất số phức z thì \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài hoặc trong.

    TH1: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài khi và chỉ khi {R_1} + {R_2} = OI \Leftrightarrow 1 + m = 2 \Leftrightarrow m = 1\left( {TM} ight).

    TH2: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc trong khi và chỉ khi \left[ \begin{array}{l}{R_1} + OI = {R_2} \Leftrightarrow 1 + 2 = m \Leftrightarrow m = 3\,\,\,\,\,\,\left( {TM} ight)\\OI + {R_2} = {R_1} \Leftrightarrow m + 2 = 1 \Leftrightarrow m =  - 1\,\,\,\,\,\,(L)\end{array} ight..

    Vậy S = \left\{ {1,3} ight\}.

  • Câu 8: Nhận biết
    Tính P

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Hướng dẫn:

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 9: Vận dụng
    Tính giá trị của biểu thức

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Hướng dẫn:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 10: Thông hiểu
    Tính giá trị

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Đáp án là:

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Ta có:

    {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + \sqrt 2 i\\z = 1 - \sqrt 2 i\end{array} ight.

    Suy ra:  w = z_1^2 + z_2^2 + {z_1}{z_2}

    = {\left( {1 + \sqrt 2 i} ight)^2} + {\left( {1 - \sqrt 2 i} ight)^2} + \left( {1 + \sqrt 2 i} ight)\left( {1 - \sqrt 2 i} ight) = 1

  • Câu 11: Vận dụng
    Tính giá trị

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

    Hướng dẫn:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 12: Thông hiểu
    Đếm số nghiệm

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 13: Nhận biết
    Tìm nghiệm?

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

    Hướng dẫn:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 14: Vận dụng cao
    Tìm giá trị nhỏ nhất

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 15: Thông hiểu
    Điểm biểu diễn của số phức

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

    Hướng dẫn:

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 16: Thông hiểu
    Tính tổng số tất cả các nghiệm

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 17: Thông hiểu
    Nghiệm PT bậc 4

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Hướng dẫn:

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 18: Vận dụng cao
    Tìm giá trị nhỏ nhất

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm \min \left| {{z^3} - z + 2} ight|.

    Hướng dẫn:

     Gọi z = a + bi, với a, b \in \mathbb{R}.

    Theo giả thiết ta có \left| z ight| = 1 suy ra z.\bar z = 1{a^2} + {b^2} = 1, - 1 \le a \le 1.

    Ta có \left| {{z^3} - z + 2} ight| = \left| {{z^3} - z + 2z.\bar z} ight| = \left| z ight|\left| {{z^2} - 1 + 2\bar z} ight|

    = \left| {{a^2} - {b^2} + 2a - 1 + \left( {2ab - 2b} ight)i} ight| = \left| {2\left( {{a^2} + a - 1} ight) + 2b\left( {a - 1} ight)i} ight|

    = \sqrt {4{{\left( {{a^2} + a - 1} ight)}^2} + 4{b^2}{{\left( {a - 1} ight)}^2}}

    = \sqrt {16{a^3} - 4{a^2} - 16a + 8}  = 2\sqrt {4{a^3} - {a^2} - 4a + 2}

    Xét hàm số f\left( x ight) = 4{x^3} - {x^2} - 4x + 2 trên \left[ { - 1;\,1} ight].

    Ta có f'\left( x ight) = 12{x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x =  - \dfrac{1}{2}\end{array} ight..

    Ta có f\left( { - 1} ight) = 1;f\left( 1 ight) = 1;f\left( {\frac{2}{3}} ight) = \frac{2}{{27}};f\left( { - \frac{1}{2}} ight) = \frac{{13}}{4}.

    Vậy \mathop {\min }\limits_{\left[ { - 1;\,1} ight]} f\left( x ight) = f\left( {\frac{2}{3}} ight) = \frac{2}{{27}}.

    Do đó \min \left| {{z^3} - z + 2} ight| = \frac{{2\sqrt 6 }}{9} khi a = \frac{2}{3}b =  \pm \frac{{\sqrt 5 }}{3}.

  • Câu 19: Vận dụng
    Tìm tổng các giá trị

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

    Đáp án là:

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

     Ta có với mọi a \in \mathbb R thì phương trình {z^2} + 3z + {a^2} - 2a = 0 luôn có nghiệm phức.

    {z_1} = \frac{{ - 3 + i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}{z_2} = \frac{{ - 3 - i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}.

    Suy ra \left| {{z_1}} ight| = \left| {{z_2}} ight| = \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}.

     

    \left| {{z_{m{o}}}} ight| = 2 \Rightarrow \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}  = 2

    \Leftrightarrow \frac{9}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4} = 4 \Leftrightarrow \left| { - 4{a^2} + 8a + 9} ight| = 7

    \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 9 = 7\\ - 4{a^2} + 8a + 9 =  - 7\end{array} ight. \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 2 = 0{m{        }}\left( 1 ight)\\ - 4{a^2} + 8a + 16 = 0{m{      }}\left( 2 ight)\end{array} ight.

    Từ (1) ta có  {a_1} + {a_2} = 2, từ (2) ta có {a_3} + {a_4} = 2.

    Vậy tổng {a_1} + {a_2} + {a_3} + {a_4} = 4.

  • Câu 20: Vận dụng
    Tính giá trị

    Cho a, b, c là các số thực và z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}. Giá trị của \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight) bằng:

    Hướng dẫn:

     Cách 1: Ta có

    z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2} \Rightarrow {z^2} =  - \frac{1}{2} - i\frac{{\sqrt 3 }}{2}

    {z^3} = 1;{z^4} = z{z^2} + z =  - 1 .

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = {a^2} + {b^2}{z^3} + {c^2}{z^3} + ab\left( {{z^2} + z} ight) + bc\left( {{z^2} + z} ight) + ca\left( {{z^2} + z} ight)

    = {a^2} + {b^2} + {c^2} - ab - bc - ca

    Cách 2: Chọn a = 1;b = 2;c = 3.

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = \left( {1 + 2z + 3{z^2}} ight)\left( {1 + 2{z^2} + 3z} ight) = 3

    Thử lại các đáp án với a = 1;b = 2;c = 3  ta thấy chỉ có đáp án {a^2} + {b^2} + {c^2} - ab - bc - ca

    thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo