Luyện tập Hàm số mũ và hàm số lôgarit (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Chọn khẳng định đúng?

    Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T dã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng?

    Hướng dẫn:

    Lãi suất mỗi tháng là \frac{a}{{12}}\%. Theo công thức lãi kép ta có:

    \begin{matrix}  200.{\left( {1 + \dfrac{a}{{12}}\% } ight)^{24}} = 245,512 \hfill \\   \Rightarrow \dfrac{a}{{12}}\%  = \sqrt[{24}]{{\dfrac{{245,512}}{{200}}}} - 1 \hfill \\   \Rightarrow a \approx 10 \hfill \\ \end{matrix}

  • Câu 2: Nhận biết
    Hàm số nào nghịch biến trên tập số thực?

    Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

    Hướng dẫn:

     Ta có:

    y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight);y = {\log _{\frac{1}{2}}}x là các hàm số không xác định trên \mathbb{R}

    \frac{2}{e} < 1 \Rightarrow y = {\left( {\frac{2}{e}} ight)^x} nghịch biến trên \mathbb{R}

  • Câu 3: Thông hiểu
    Hàm số nào sau đây nghịch biến trên tập xác định?

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Hướng dẫn:

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 4: Vận dụng
    Tìm m để hàm số xác định trên tập số thực

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \left[ { - 2018;2018} ight] để hàm số y = \ln \left( {{x^2} - 2x - m + 1} ight) có tập xác định \mathbb{R}?

    Hướng dẫn:

    Hàm số xác định trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {1 + m - 1 < 0} \end{array}} ight. \Rightarrow m < 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 2018;2018} ight]} \end{array}} ight. \Rightarrow m \in \left\{ { - 2018; - 2017;...; - 1} ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 5: Nhận biết
    Hàm số nào sau đây đồng biến trên tập số thực

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Do \frac{{\sqrt 2  + \sqrt 3 }}{3} > 1 nên hàm số y = {\left( {\frac{{\sqrt 2  + \sqrt 3 }}{3}} ight)^x} đồng biến trên \mathbb{R} 

  • Câu 6: Nhận biết
    Tính đạo hàm của hàm số

    Hàm số y = {\log _{2019}}\left| x ight|;\forall x e 0 có đạo hàm là:

    Hướng dẫn:

    Áp dụng công thức đạo hàm ta có: y' = \frac{1}{{x\ln 2019}}

  • Câu 7: Vận dụng cao
    Tìm m để phương trình có hai nghiệm trái dấu?

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 3} ight){.16^x} + \left( {2m - 1} ight){.4^x} + m + 1 = 0 có hai nghiệm trái dấu?

    Hướng dẫn:

     Đặt t = {4^x};t > 0 thì phương trình trở thành \left( {m + 3} ight){t^2} + \left( {2m - 1} ight)t + m + 1 = 0\left( * ight)

    Phương trình ban đầu có hai nghiệm trái dấu tương đương với (*) có hai nghiệm 0 < {t_1} < 1 < {t_2}

    Đặt P\left( t ight) = \left( {m + 3} ight){t^2} + \left( {2m - 1} ight)t + m + 1 khi đó:

    \left\{ {\begin{array}{*{20}{c}}  {m + 3 e 0} \\   {\left( {m + 3} ight).P\left( 1 ight) < 0} \\   {\left( {m + 3} ight).P\left( 0 ight) > 1} \\   {\dfrac{{{t_1} + {t_2}}}{2} > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\left( {m + 3} ight)\left( {4m + 3} ight) < 0} \\   {\left( {m + 3} ight)\left( {m + 1} ight) > 0} \\   {\dfrac{{ - \left( {2m - 1} ight)}}{{2\left( {m + 3} ight)}} > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 3 < m <  - \dfrac{4}{3}} \\   {\left[ {\begin{array}{*{20}{c}}  {m <  - 3} \\   {m >  - 1} \end{array}} ight.} \\   { - 3 < m < \dfrac{1}{2}} \end{array}} ight. \Leftrightarrow  - 1 < m <  - \frac{3}{4}

     

  • Câu 8: Nhận biết
    Đồ thị hình bên là của hàm số nào?

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hình bên là của hàm số nào?

    Hướng dẫn:

     Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số y = {\left( {\sqrt 2 } ight)^x};y = {\left( {\sqrt 3 } ight)^x}

    Đồ thị hàm số đi qua điểm \left( { - 1;3} ight) nên hàm số y = {\left( {\frac{1}{3}} ight)^x} thảo mãn

  • Câu 9: Vận dụng
    Bài toán lãi suất

    Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?

    Hướng dẫn:

     Số tiền bác Thu thu được ở năm thứ nhất là:

    + Gửi kì hạn theo quý: 300.{\left( {1 + {r_1}} ight)^4} = A (triệu đồng)

    + Gửi kì hạn theo tháng: 300.{\left( {1 + {r_2}} ight)^{12}} = B (triệu đồng)

    Số tiền bác Thu thu được ở sau năm thứ hai là:

    + Gửi kì hạn theo quý: \frac{A}{2}{\left( {1 + {r_1}} ight)^4} (triệu đồng)

    + Gửi kì hạn theo tháng: \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} (triệu đồng)

    Số tiền lãi bác Thu thu được là

    \frac{A}{2}{\left( {1 + {r_1}} ight)^4} + \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} - 600 \approx 112,219 (triệu đồng)

  • Câu 10: Vận dụng
    Tính giá trị của biểu thức M

    Cho hàm số f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}}. Tính giá trị của biểu thức M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight)

    Hướng dẫn:

    Với x \in \left[ {0; + \infty } ight) ta có: \left\{ {\begin{array}{*{20}{c}}  {x + 1 > 0} \\   {x + 4 > 0} \end{array}} ight. \Rightarrow f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}} = \ln \left( {x + 1} ight) - \ln \left( {x + 4} ight)

    Ta có: f'\left( x ight) = \frac{1}{{x + 1}} - \frac{1}{{x + 4}} do đó:

    \begin{matrix}  M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight) \hfill \\  M = \left( {1 - \dfrac{1}{4}} ight) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} ight) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} ight) + ... + \left( {\dfrac{1}{{2020}} - \dfrac{1}{{2023}}} ight) \hfill \\  M = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề nào sau đây là mệnh đề sai?

    Hướng dẫn:

    Ta thấy: y = {2^{ - x}} = {\left( {\frac{1}{2}} ight)^x}

    Do vậy đồ thị của hàm số y = {2^{ - x}} không có tiệm cận đứng

  • Câu 12: Vận dụng
    Có tất cả bao nhiêu cách phân tích số

    Có tất cả bao nhiêu cách phân tích số {15^9} thành tích của ba số nguyên dương, biết rằng các cách phân tích mà các nhân tử chỉ khác nhau về thứ tự thì chỉ được tính một lần?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  {15^9} = {3^9}{.5^9} \hfill \\   \Rightarrow {15^9} = \underbrace {3...3}_9.\underbrace {5...5}_9 \hfill \\   \Rightarrow {15^9} = \underbrace {\underbrace {3...3}_{{a_1}}.\underbrace {5...5}_{{b_1}}}_x.\underbrace {\underbrace {3...3}_{{a_2}}.\underbrace {5...5}_{{b_2}}}_y.\underbrace {\underbrace {3...3}_{{a_3}}.\underbrace {5...5}_{{b_3}}}_z \hfill \\ \end{matrix}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {x = {3^{{a_1}}}{5^{{b_1}}}} \\   {y = {3^{{a_2}}}{5^{{b_2}}}} \\   {z = {3^{{z_1}}}{5^{{z_2}}}} \end{array}} ight. suy ra ta có hệ \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.

    Xét ba trường hợp:

    Trường hợp 1: Các số x,y,z bằng nhau

    => chỉ có 1 cách chọn

    Trường hợp 2: Trong ba số x,y,z có hai số bằng nhau, giả sử x = y

    =>\left\{ {\begin{array}{*{20}{c}}  {{a_1} = {a_2}} \\   {{b_1} = {b_2}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{a_1} + {a_3} = 9} \\   {2{b_a} + {b_3} = 9} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{a_3} = 9 - 2{a_1}} \\   {{b_3} = 9 - 2{a_1}} \end{array}} ight.

    => Có 5 cách chọn {a_1} và 5 cách chọn {b_1}

    Trường hợp 3: Số cách chọn ba số phân biệt:

    Số cách chọn \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.C_{11}^2.C_{11}^2

    => Số cách chọn ba số phân biệt là C_{11}^2.C_{11}^2 - 24.3 - 1

    Vậy số cách phân tích {15^9} thành tích ba số nguyên dương là \frac{{C_{11}^2.C_{11}^2 - 24.3 - 1}}{{3!}} + 25 = 517

  • Câu 13: Thông hiểu
    Hàm số nào nghịch biến trên tập số thực?

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

    Hướng dẫn:

     Hàm số y = {\left( {\frac{2}{e}} ight)^x} là hàm số mũ có cơ số bằng \frac{2}{e} \in \left( {0;1} ight) nghịch biến trên \mathbb{R}

    Hàm số y = {\left( {\frac{\pi }{3}} ight)^x} là hàm số mũ có cơ số \frac{\pi }{3} > 1 nên đồng biến trên \mathbb{R}

    Hàm số y = {\log _{\frac{1}{2}}}x chỉ xác định trên \left( {0; + \infty } ight)

    Hàm số y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight)y' = \frac{{4x}}{{\left( {2{x^2} + 1} ight)\ln \frac{\pi }{4}}} nên nghịch biến trên \left( {0; + \infty } ight)

  • Câu 14: Vận dụng cao
    Tìm giá trị nhỏ nhất của của biểu thức P

    Xét các số thực dương x;y thỏa mãn {\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y - {\log _{\frac{1}{2}}}\left( {x + {y^2}} ight) \leqslant 0. Tìm giá trị nhỏ nhất {P_{\min }} của biểu thức P=x+3y

    Hướng dẫn:

    Theo bài ta có:

    \begin{matrix}  {\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y - {\log _{\frac{1}{2}}}\left( {x + {y^2}} ight) \leqslant 0 \hfill \\   \Leftrightarrow {\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y \leqslant {\log _{\frac{1}{2}}}\left( {x + {y^2}} ight) \hfill \\   \Leftrightarrow {\log _{\frac{1}{2}}}\left( {xy} ight) \leqslant {\log _{\frac{1}{2}}}\left( {x + {y^2}} ight) \hfill \\   \Leftrightarrow xy \geqslant x + {y^2} \hfill \\   \Leftrightarrow x\left( {y - 1} ight) \geqslant {y^2} > 0 \hfill \\ \end{matrix}

    x > 0 \Rightarrow y - 1 > 0 \Rightarrow y > 1

    => x \geqslant \frac{{{y^2}}}{{y - 1}}. Khi đó ta có:

    P = x + 3y \geqslant \frac{{{y^2}}}{{y - 1}} + 3y;{\text{ }}\left( {y > 1} ight)

    Xét hàm số f\left( y ight) = \frac{{{y^2}}}{{y - 1}} + 3y;{\text{ }}\left( {y > 1} ight) ta có:

    \begin{matrix}  f'\left( y ight) = \dfrac{{2y\left( {y - 1} ight) - {y^2}}}{{{{\left( {y - 1} ight)}^2}}} + 3 = \dfrac{{{y^2} - 2y + 3{y^2} - 6y + 3}}{{{{\left( {y - 1} ight)}^2}}} = \dfrac{{4{y^2} - 8y + 3}}{{{{\left( {y - 1} ight)}^2}}} \hfill \\  f'\left( y ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {y = \dfrac{3}{2}} \\   {y = \dfrac{1}{2}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

     Tìm giá trị nhỏ nhất của của biểu thức P

    Từ bảng biến thiên ta thấy \mathop {\min f\left( y ight)}\limits_{y > 1}  = f\left( {\frac{3}{2}} ight) = 9 \Rightarrow P \geqslant 9 \Rightarrow {P_{\min }} = 9

  • Câu 15: Nhận biết
    Chọn số mệnh đề đúng

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    Hướng dẫn:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 16: Thông hiểu
    Tìm hàm số tương ứng với đồ thị hàm số

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 17: Thông hiểu
    Trong các phát biểu sau đây, phát biểu nào sai?

    Trong các phát biểu sau đây, phát biểu nào sai?

    Hướng dẫn:

    Phát biểu sai là: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \left( {0, + \infty } ight)

    Sửa lại: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \mathbb{R}

  • Câu 18: Vận dụng
    Mệnh đề nào sau đây đúng?

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Hướng dẫn:

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu
    Đẳng thức nào sau đây đúng với mọi số dương x?

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Hướng dẫn:

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 20: Nhận biết
    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sin x + {\log _3}{x^3};\left( {x > 0} ight) là:

    Hướng dẫn:

     Áp dụng công thức tính đạo hàm: \left\{ {\begin{array}{*{20}{c}}  {\left( {\sin x} ight)' = \cos x} \\   {\left( {{{\log }_a}x} ight)' = \dfrac{1}{{x\ln a}};\left( {0 < a e 1} ight)} \end{array}} ight. ta có:

    y' = \left( {\sin x + {{\log }_3}{x^3}} ight) = \cos x + \frac{3}{{x\ln 3}}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (30%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo