Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Cho hàm số y = f(x) xác định trên thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho hàm số y = f(x) xác định trên thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Tìm nguyên hàm của hàm số bằng:
Công thức áp dụng làm bài:
Ta có:
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và . Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Tìm nguyên hàm của hàm của hàm số
Dựa vào công thức để giải bài toán
Gọi F(x) là một nguyên hàm của hàm số thỏa mãn
. Tính
.
Hàm số là một nguyên hàm của hàm số nào sau đây?
Tìm họ nguyên hàm của hàm số
Học sinh sử dụng công thức sau:
Ta có:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức . Kết luận nào sau đây đúng?
Ta có:
Biết là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Họ các nguyên hàm của hàm số trên khoảng
Tìm nguyên hàm của hàm số
Công thức sử dụng trong bài toán là:
Ta có:
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Tìm nguyên hàm của hàm số bằng:
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3
Cho hàm số f(x) xác định trên thỏa mãn
. Tính giá trị của biểu thức
=>
Theo bài ra ta có:
=>
=>
Cho F(x) là nguyên hàm của hàm số thỏa mãn
. Tìm tập nghiệm S của phương trình
Đặt
Ta có:
Cho hàm số biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Hàm số có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>