Tính diện tích hình phẳng giới hạn bởi
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Tính diện tích hình phẳng giới hạn bởi
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số là:
Phương trình hoành độ giao điểm 2 đồ thị là:
Diện tích cần tìm là:
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
Diện tích S của hình phẳng trên là:
Ta có:
=>
Cho hình phẳng giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Cho đường cong (C) . Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây?
Ta có:
Ta có:
Phương trình tiếp tuyến d của (C) tại A là
Ta có phương trình hoành độ giao điểm d và (C) là:
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C).
Ta có:
Thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường , khi xoay quanh trục
.
Phương trình hoành độ giao điểm là:
Gọi là thể tích khối tròn xoay cần tìm ta có:
Đặt
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
Gọi S là diện tích của hình phẳng trên ta có:
Ta có:
Khi đó:
Tính thể tích của một vật thể nằm giữa hai mặt phẳng , biết thiết diện của vật thể cắt bởi mặt phẳng
vuông góc với trục
tại điểm có hoành độ là một tam giác đều có cạnh bằng
Diện tích thiết diện là
Ta có thể tích cần tính là
Cho hình phẳng giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Một chất điểm A từ trạng thái nghỉ chuyển động với vận tốc nhanh dần đều, 8 giây sau nó đạt đến vận tốc 6m/s. Từ thời điểm đó nó chuyển động đều. Một chất điểm B khác xuất phát từ cùng vị trí A nhưng chậm hơn nó 12 giây với vận tốc nhanh dần đều và đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc B tại thời điểm đó.
Phương trình vận tốc của vật A là
Ta có:
Quãng đường vật A đi được sau đầu là:
Phương trình vận tốc của vật B là
=> Vận tốc của vật B khi hai vật gặp nhau là:
Thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là một hình chữ nhật có độ dài hai cạnh
và
. Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
.
Do thiết diện là hình chữ nhật nên diện tích của thiết diện là
Ta có thể tích cần tính là:
Một vật chuyển động với vận tốc ban đầu là và gia tốc
. Hỏi sau khi chuyển động với gia tốc đó được 2 giây thì vận tốc của vật là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc nên
Vận tốc của vật khi chuyển động với gia tốc đó được là
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian là
. Biết vận tốc ban đầu bằng
, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Vận tốc của vật được tính theo công thức
=> Quãng đường vật di chuyển được tính theo công thức:
Ta có:
Cho đường tròn và parabol
.
cắt
thành hai phần. Tìm tỉ số diện tích của hai phần đó.
Hoành độ giao điểm của (P) và (C) là:
Xét giao điểm thuộc góc phần tư thứ nhất, với
Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại
Ta có:
Đặt
Khi đó
Diện tích hình tròn
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bời các đường thẳng xung quanh trục Ox là:
Phương trình hoành độ giao điểm của và
là
Thể tích khối tròn xoay cần tính là
Đặt
Ta có:
Tính diện tích S của hình phẳng giới hạn bới đồ thị của hàm số và các đường thẳng
là:
Ta có:
Phương trình hoành độ giao điểm của hai đồ thị là
Diện tích hình phẳng cần tìm là:
Tính diện tích hình phẳng được giới hạn bởi đồ thị và hai tiếp tuyến của
tại
Ta có hình vẽ minh họa như sau:
Phương trình tiếp tuyến của (P) tại A(-1;0) là:
Phương trình tiếp tuyến của (P) tại B(2;3) là:
Từ hình vẽ ta suy ra diện tích của hình phẳng cần tìm là:
Cho là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Cho hình phẳng giới hạn bới đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
bằng bao nhiêu?
Thể tích cần tìm là:
Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng quay quanh
.
Tung độ giao điểm